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ABSTRACT
In this paper we present a novel wavelet-domain image upsam-
pling algorithm based on iterative spatially adaptive Þltering. A
high-resolution image is reconstructed by alternating two proce-
dures: spatially adaptive Þltering and projection on the observation-
constrained subspace. The Block-Matching and 3D Þltering
(BM3D) [3] technique is used to suppress ringing, and reconstruct
missing wavelet detail coefÞcients. The BM3D algorithm exploits
the local image statistics collected from similar blocks to extract
local and non-local image features by 3D transform-domain shrink-
age. It results in high-quality upsampled images, with sharp edges
and practically no artifacts.

1. INTRODUCTION

Image upsampling is an intrinsically ill-posed problem. To solve it,
one has to apply some constraints. The choice of the constraints and
of the interpolation methods depends on assumptions about how the
low-resolution image was obtained. Different approaches were sug-
gested for different observation models. Let us mention few among
the more recently published methods.

Sparsity. The method presented in [15] by Mueller et al., uti-
lizes sparsity in a contourlet transform domain as a regularizing
condition. The algorithm iteratively alternates projecting to the
wavelet approximation subspace deÞned by the low-resolution im-
age with thresholding the coefÞcients in contourlet domain. While
performing well along edges, this methods introduces signiÞcant
ringing artifacts due to the length of the Þlters used in the contourlet
transform.

Cross-scale correlation. Liu et al. [13] proposed a non-iterative
algorithm based on high-pass subband estimation from the interpo-
lated Laplacian image pyramid (WLPSR - wavelet Laplacian pyra-
mid super resolution). To compensate the ringing, cycle-spinning
is performed. Several low-resolution images are generated by spa-
tial shifting and down-sampling from high-resolution image esti-
mate obtained by WLPSR. These low-resolution images are recon-
structed again with the WLPSR and fused into the Þnal estimate by
averaging.

Learning. The alternative approach based on learning by exam-
ples was introduced by Freeman et al. [7], where unknown high-
frequency data is �learned� from a training set of high-resolution
training images. A similar algorithm was proposed by Jiji et al.
[8]. It is based on learning in the wavelet domain, where unknown
wavelet coefÞcients at the Þner scales are �learned� from the Þne
scale coefÞcients of the training images. A modiÞcation of this al-
gorithm using contourlet learning [9] was also presented. To upsam-
ple textures, Li [11] proposed to use texture descriptive statistics in
wavelet domain as parametric constraints, where parameters are es-
timated by learning from high-resolution images. The algorithm
uses patch-based learning, combining the patches via Bayesian fu-
sion.

This work was supported by the Academy of Finland (application no.
213462, Finnish Programme for Centres of Excellence in Research 2006-
2011, and application no. 118312, Finland Distinguished Professor Pro-
gramme 2007-2010).

Non-local approximations. The methods in this group exploit
the idea of non-local averaging introduced by Buades et al. [1]. The
zooming technique by Ebrahimi and Vrscay [5] combines learn-
ing from examples taken across different scales with the weighting
scheme used in the denoising algorithm from [1]. Luong et al. [14]
proposed a method where the found similar blocks are interpolated,
registered with subpixel precision and Þnally fused in a median es-
timate. The additional TV regularization step is performed in order
to denoise or deblur the upsampling data.

In this work, we propose a new upsampling algorithm based
on iterative spatially adaptive Þltering. This Þltering has been suc-
cessfully applied to many image reconstruction problems such as
denoising [3] and compressed sensing [6]. There it has been shown
that this Þltering, being of nonparametric nature, produces results
which are highly competitive with respect to the state-of-the-art al-
gorithms developed on the base of a global optimization.
For the upsampling task considered in this paper, we use the Block
Matching and 3D Þltering (BM3D) algorithm [3]. The BM3D al-
gorithm exploits the local image statistics collected from similar
blocks. Yet, the Þlter is non-local, as the collected blocks can be at
different spatial locations. The local and non-local image features
are extracted simultaneously by the so-called collaborative Þltering,
which is realized by 3D transform-domain shrinkage. Thus, the Þl-
ter is highly sensitive to the image details, and stable versus noisy
components of the data.

In what follows, we limit ourself to the wavelet-domain obser-
vation model utilized by [15], for which the upsampling problem
can be formalized as follows.

Let us assume that the low-resolution image ylow of size n1×n2
is a obtained from the (coarsest) approximation subband!LmLm =
! of an m-stage orthonormal wavelet decomposition Wm of a
higher-resolution original image y of size 2mn1×2mn2 as

ylow = 2−m Wm (y)|! ,
where |! denotes the restriction to the subdomain ! (also of
size n1 × n2) and the scaling factor 2−m ensures that the means
of y and ylow are the same. The problem is to reconstruct y
from ylow. Clearly, any good estimate ŷ of y must have its
approximation subband equal 2m ylow. Under this restriction,
the estimates constitute an afÞne subspace Wylow of codimen-
sion n1n2 in a 22mn1n2-dimensional linear space W : Wylow =!
y ∈W : Wm (y)|! = 2m ylow

"
. The obvious minimum %2-norm

estimate ŷ%2 = argmin
ŷ∈Wylow

##ŷ##2 is obtained when all the wavelet detail
coefÞcients (deÞned on the complementary !c of !) are zero, i.e.
ŷ%2 =W−1

m
$
2mUm {ylow}

%
, where Um is a zero-padding operator,

Um (A)=
&
A 0
0 0

'
, that expands an input matrix A of size ñ1×

ñ2 to the size 2mñ1×2mñ2. Note that ŷ%2 =W−1
m
$Wm (y)χ!

%
,

where χ! is the characteristic (indicator) function of!, χ! (i, j)=
1 ∀(i, j) ∈! and χ! (i, j)= 0 ∀(i, j) /∈!. However, the estimate
obtained in this way would suffer from heavy ringing artifacts and
blurred edges.
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Figure 1: Iteration scheme

Our iterative upsampling process is initialized from the mini-
mum %2-norm solution ŷ%2 . At each iteration, the adaptive Þlter-
ing is applied to the current estimate and then the Þltered estimate
is projected on the subspace deÞned by the low-resolution image
ylow. The general scheme of our algorithm is essentially based on
our previously proposed iterative procedure for compressed sens-
ing image reconstruction1 [6]. While, in the iterative alternation
of the constraints, it is similar to the interpolation algorithm from
[15], the block-matching and collaborative Þltering procedure can
be viewed as a self-learning, where each block �learns� or �tries to
extract� missing information from neighboring similar blocks, thus
resembling [8] or [5].

We demonstrate the effectiveness of the proposed approach in a
number of experiments. The obtained results show a signiÞcant im-
provement in PSNR and SSIM [17] over some of the best methods
known in the Þeld.

2. THE ALGORITHM

2.1 Iterative system
One-stage upsampling. Given ylow, we deÞne a sequence of esti-
mates ŷ(k), k = 0,1,2, . . . , using the following iterative system:(
ŷ(0) = ŷ%2 =W−1

m
$
2mUm{ylow}

%
,

ŷ(k) =W−1
m
)
2mUm{ylow}+Wm

$
)
$
ŷ(k−1),σ k

%%$
1−χ!

%*
,
(1)

where ) is a spatially adaptive Þlter, σ k is a parameter controlling
the strength of this Þlter, and 1−χ! = χ!c is the characteristic
function of the complementary of !. In other words, at each iter-
ation in (1), we Þlter the image ŷ(k−1) obtained from the previous
iteration, perform wavelet decomposition, substitute the n1×n2 ap-
proximation coefÞcients with those deÞned by ylow (considered as
true information known about original image y), and take an inverse
wavelet transform to obtain ŷ(k). The ßowchart of the system (1)
is presented in Figure 1. The iteration process stops when the dis-
tance between ŷ(k) and ŷ(k−1) in some metric becomes less than
certain threshold δ0, or if the maximum number of iterations kÞnal
is reached.

We remind that the value of m determines the total number of
decomposition levels in the wavelet transform Wm . Because the
size of the approximation subband ! (obtained after the m-th de-
composition) is Þxed to n1×n2 (equal to the size of ylow), the value
of m determines also the size of the high-resolution images. There-
fore, the above scheme can be used to upsample ylow to any size
2mn1×2mn2, for an arbitrary m ∈N.
m-stage progressive upsampling. For upsampling by a factor 2m
when m > 1, an alternative scheme can be suggested. Instead of
upsampling the image 2m times at once, we upsample it progres-
sivelym times, each time (we call it stage) by the factor of 2. In this
case the output from previous stage ŷ j−1 becomes the input ŷ(0)j

1Note however that here our notation differs from that in [6], where
y and ŷ were used to denote 2D transforms of the image and its estimate,
respectively.

for the next one, where stage numbers are denoted by the subscript
j = 1, . . . ,m. In this way, the recursion equation takes the following
form:
ŷ0 = ylow,
ŷ(0)j =W−1

1
$
2U1

!
ŷ j−1

"%
,

ŷ(k)j =W−1
j

)
2 jU j {ylow}+W j

$
)
$
ŷ(k−1)j ,σ k

%%$
1−χ!

%*
,

(2)

where the superscript k corresponds to the iteration count inside
each stage. We remark that this m-stage upsampling is not a re-
cursion of m �one-stage upsamplings with factor 2�, because in (2)
the projection is always made onto the initialWylow deÞned by ylow
(and not by ŷ(0)j ).

2.2 The Þlter
We use the BM3D denoising algorithm as the spatially adaptive Þl-
ter). Its detailed description can be found in [3]. In brief, the Þlter
works as follows.
1. Block-wise estimates. Processing the image in sliding-window
manner, for each block:
(a) Grouping. Find blocks that are similar to the currently

processed one and then stack them together in a 3D array
(group).

(b) Collaborative hard-thresholding. Apply a 3D transform to
the formed group, attenuate the noise by hard-thresholding
of the transform coefÞcients, invert the 3D transform to pro-
duce estimates of all grouped blocks, and return the esti-
mates of the blocks to their original positions.

2. Aggregation. Compute the estimate of the output image by
weighted averaging all of the obtained block-wise estimates that
are overlapping.

Due to the similarity between the grouped blocks, the transform can
achieve a highly sparse representation of the true signal so that the
noise or small distortions can be well separated by shrinkage. In this
way, the collaborative Þltering reveals even the Þnest details shared
by grouped fragments and at the same time it preserves the essential
unique features of each individual fragment.

For the purposes of this work, we do not perform the Þnal col-
laborative Wiener Þltering stage of the original BM3D denoising
algorithm [3].

Here, the parameter σ k is used in place of the standard-
deviation of the noise. This parameter controls the similarity
tolerance of the grouping and the collaborative hard-thresholding
strength. In order to prevent smearing of the small details the se-
quence {σ k}k=0,1,... should be decreasing with the progress of the
iterations.

3. EXPERIMENTAL RESULTS

We performed two sets of experiments: Þrst, we assess both objec-
tive and subjective quality with respect to a known high-resolution
reference image, comparing our results with those of other upsam-
pling methods; second, we test our method for upsampling images
of factors of 4 and 8 from their original resolution.
Quantitative performance. For the experiments we use four
512×512 grayscale images: Lena, Barbara, Peppers, and Gaussian
disc2. The images were Þrst downsampled 4 times by 2 stages of
wavelet decomposition, obtaining ylow; then the images are upsam-
pled to the original size from ylow. Both the one-stage (1) and the
m-stage (2) algorithm are tested. We compare them against two
other recent upsampling methods: the contourlet-based upsampling

2The Lena, Barbara, and Peppers images are from
http://www.cs.tut.fi/~lasip/2D, whereas Gaussian disc is from
[15]. All the experiments in the present paper were carried out using
these four images. We note that our Þrst three images differ from the
corresponding ones used by the authors of [15].
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ŷ%2
Luong et al. Contourlet Proposed

[14] [15] one-stage m-stage
Lena 29.34 28.98 29.79 30.40 30.53
Barbara 23.66 23.54 23.70 23.84 23.86
Peppers 30.18 29.89 30.52 31.74 32.13
Gaus.disc 40.62 41.20 41.70 44.56 49.51

Table 1: PSNR (dB) of the images upsampled 4 times from the
approximation coefÞcients of a two-level wavelet decomposition of
the original high-resolution y using a periodically padded Symlet
transform of order 8.

ŷ%2
Luong et al. Contourlet Proposed

[14] [15] one-stage m-stage
Lena 0.826 0.819 0.834 0.847 0.849
Barbara 0.664 0.661 0.668 0.683 0.686
Peppers 0.817 0.812 0.820 0.842 0.845
Gaus.disc 0.986 0.986 0.989 0.995 0.998

Table 2: SSIM [17] of the images upsampled 4 times from the ap-
proximation coefÞcients of a two-level wavelet decomposition of
the original high-resolution y using a periodically padded Symlet
transform of order 8.

algorithm3 [15] and the non-local interpolation algorithm proposed
by Luong et al.4 [14]. The PSNR and SSIM [17] results are summa-
rized in Tables 1 and 2. In order to avoid the inßuence of border dis-
tortions and thus provide more fair comparisons, PSNR and SSIM
values are calculated over the central part of the images, omitting
a border of 15-pixel width. Both versions of our algorithm achieve
better quantitative results than the ones provided for comparison
[14],[15]. In particular, the m-stage version demonstrates the best
performance for all images. The numerical difference between the
two versions is noticeable especially for the Gaussian disc.
Visual appearance. While the SSIM is known to be superior to
the PSNR as a measure of subjective image quality, we argue that
neither of these two measures is, in general, faithful enough and
that direct visual inspection is necessary to assess the quality of the
upsampled estimates. Figures 2 and 3 provide a visual comparison
between the different methods. Visual examination shows that the
images reconstructed with our algorithm are practically free of any
kind of ringing artifacts, look sharp, and no signiÞcant geometri-
cal distortions can be seen. Nevertheless, some smearing is present
in the areas where the Þne details have been smoothed in the low-
resolution image (e.g., details of the feathers in Figure 3) especially
with the one-stage reconstruction. With the m-stage algorithm the
smearing is less pronounced, providing visually better images. De-
spite its relatively high PSNR and SSIM scores, it should be clear
from the Þgures that the ŷ%2 estimate is actually the worst among
these Þve.
Implementation and computational complexity. In all our exper-
iments Symlets of order 8 were utilized as the wavelet basis. In
order to obtain exactly n1× n2 coefÞcients for the low-resolution
image, periodic padding is used.

A one-step realization of the original BM3D algorithm [3] is
used, without the collaborative Wiener Þltering step. The Þlter�s
internal 3D transform is a combination of a 2D DCT transform
applied to each block and of a 1D Haar wavelet transform ap-
plied along the third dimension. Other Þlter parameters were Þxed
through all experiments, but different for one- and m-stage algo-
rithms. The parameters are as follows.
One-stage algorithm. Experimentally, we found that the algorithm
performs better if we start with larger blocks and then switch to a
smaller size. Thus, 8×8 block-size was used for the Þrst 7 iter-

3Matlab implementation available online at
http://www.ifp.uiuc.edu/~nmueller/interpcontourlet.zip
4Upsampled images have been kindly provided by Hiep Luong.

Original ŷ%2

one-stage m-stage

Contourlet [15] Luong et al. [14]

Figure 2: Results of reconstruction (upsampling 4 times) of Lena
(face). Pictures are cropped from upsampled 512×512 size images.

ations, and 5×5 for others. A total of kÞnal =30 iterations were
performed. The σ k parameter was set to decrease linearly starting
from 20 with step -σ =0.3.
m-stage algorithm. The Þlter parameters for each stage are given
in Table 3. These parameters ensure both good performance and
graceful convergence of the reconstruction. Note that although the
size of the block progressively increases with the stages, its rela-
tive size with respect to the image ŷ(k−1)j to be Þltered is actually

decreasing, because the size of ŷ(k−1)j doubles at every stage. The
decrease in the (relative) block-size is consistent with the analyses
given in [2] and [16].

The BM3D Þlter is implemented in C++ and compiled into a
dll library. The rest of the code is realized in Matlab. Upsampling
a 128×128 image to 512×512 size on 2-GHz Intel Core 2 Duo
processor takes about 117 seconds with the one-stage algorithm and
about 86 seconds with the m-stage algorithm. However, the current
software is not optimized to use more than one processing core and
the 2D DCT transform inside the BM3D Þlter is implemented just
as matrix multiplications.
Improvement rate. As illustrated in the plot in Figure 4, our exper-
iments show that the one-stage algorithm in only 5 iterations outper-
forms the algorithms [14] and [15] and that after 15 iterations the
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Original ŷ%2

one-stage m-stage

Contourlet [15] Luong et al. [14]

Figure 3: Results of reconstruction (upsampling 4 times) of Lena
(hat). Pictures are cropped from upsampled 512×512 size images.

stage
Parameters 1 2 3
kÞnal 20 20 20
σ0 35 25 25
-σ 0.5 0.3 0.3

block size 3 5 8

Table 3: Parameters used in the m-stage upsampling algorithm.

PSNR is already quite close to its Þnal value. It is worth to comment
about the little PSNR improvement achieved for Barbara. This hap-
pens because downsampling the image four times completely blurs
the textures (e.g., the stripes of the trousers), making their recon-
struction practically impossible.

Upsampling from original resolution. In the previous experi-
ments we considered upsampling from downsampled images ob-
tained as wavelet approximation coefÞcients of a given high-
resolution image. Let us present also images upsampled of factors
4 and 8 from their original resolution. It should be emphasized that
in this case we are not performing interpolation, instead we seek a
high-resolution image whose wavelet approximation coefÞcients in
the subband !LmLm coincide (up to scaling factor 2m ) to the pixel

Figure 4: PSNR gain (dB) vs. number of iterations for the one-stage
algorithm.

values of the given low-resolution image. Figure 5 shows three frag-
ments of the Cameraman, Text, and Lighthouse images at their orig-
inal resolution. We upsample these fragments applying the m-stage
algorithm with symmetric padding of the wavelet transform (thus
avoiding the border artifacts which would arise if periodic padding
were used). The obtained high-resolution images are shown in Fig-
ure 6. Again, the visual quality of the upsampled images is good:
edges are sharp and ringing artifacts are absent.

4. DISCUSSION AND CONCLUSIONS

We have introduced a new upsampling algorithm based on Block-
Matching and 3D collaborative Þltering. This algorithm exploits the
ideas of self-learning and sparsity constraints to reconstruct missing
wavelet detail coefÞcients and the idea of the iterative projections on
the constraint subspaces (alternated projections).

This work was mostly inspired by our previous contribution [6],
where a Þrst attempt was made to apply iterative spatially adaptive
Þltering to the compressed sensing task. The system (1), in fact, is
equivalent to the recursive system used in [6], with the exception of
a missing excitation-noise term. While the excitation noise played
a key role for image reconstruction from highly incomplete data, its
inßuence to the upsampling process is found to be minimal.

The proposed upsampling algorithm can be further extended in
a number of ways. The block-matching procedure can be applied
to Þnd similar blocks not only in the high-resolution approxima-
tion image, but also among blocks in the low-resolution image, thus
enabling a sort of interscale matching (like in fractal coding). Fur-
ther modiÞcations also include changing of the observation model
from wavelets to DCT (applied globally or locally) or other trans-
forms. In [4], we present an extension of our upsampling algorithm
to the more general problem of image and video super-resolution.
We wish also to point the reader to an independent work by Li [12]
which is concurrent to our present contribution (we have received a
preprint after the submission of the draft of our manuscript). In his
work, he proposes an interpolation algorithm based on an iterative
BM3D Þltering scheme similar ours, with the main difference in the
observation model, which is there completely in the pixel domain
(the low-resolution image is assumed to be an arbitrarily sampled
version of the high-resolution one, without antialias Þltering). Also
in his case, the BM3D enables high-quality interpolation, competi-
tive to the state-of-the-art.

The main drawback of the iterative algorithm remains its speed,
which hinders its use for real-time applications. One possible ap-
proach to reduce computational complexity can be switching from
BM3D interpolation to a lower-complexity interpolation in smooth
areas, similar to the way it is done in the NEDI algorithm [10].
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Figure 5: Fragments of the Cameraman, Text, and Lighthouse im-
ages.

Figure 6: Upsampling of the three fragments shown in Figure 5 with
the m-stage algorithm. From top to bottom: Cameraman (4 times,
m = 2), Text (4 times, m = 2), Lighthouse (8 times, m = 3).
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