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ABSTRACT the characterization is intrinsically non-linear. As a conse-
Jduence, one comes to deal with classes of signals which are

We describe two deterministic constructions of dlcuona”epot closed with respect to addition. More formally:

of functions on the finite line which support certain degree o

sparsity. Definition 1. A set® C s of signals is called arN-
independentset if every subsed’ C D, with #D" = N, is
1. INTRODUCTION linearly independent.

o ) ) ) Given an2N-independent seD, every signalg € 57,
Digital signals, or simply signals, can be thought of as funcas at most one expansion of the form
tions on the finite linelF,, namely the finite field withp

elements, wherg is an odd prime. The space of signals ¢ = z asS,
# = C(Fp) is equipped with a natural Hermitian product se’
for ® ¢ ® with #D’ < N. Such an expansion, if exists, is
(¢,0) = ¢ (X) @(x). unique and is called the sparse expansion. Consequently an-
xFp other name for such a sgtis anN-sparse dictionary. Given

that a signalp admits a sparse expansion, it is natural to ask
A central problem is constructing useful classes of sigwhether the coefficientas can be effectively reconstructed.
nals that demonstrate strong descriptive power and at th# dictionary® for which there exists a polynomial time al-
same time are characterized by formal mathematical condggorithm for reconstructing the "sparse” coefficients is called
tions. Meeting these two requirements is a non trivial taskan effectivelyN-sparse dictionary.
and is a source for many novel developments in the field of To give the reader some feeling for the new concept, we
signal processing. The problem was tackled, over the yearsote that an orthonormal basis appears as a degenerate ex-
by various approaches. ample of an effectively sparse dictionary. More precisely, it
In the classical approach, a signal is characterized ifs dim.JZ-sparse, consisting afim.# signals. The effec-
terms of its expansion with respect to a specific basis. A starfiveness follows from the fact that the coefficiestcan be
dard example of this kind is the classhnd-limitedsignals ~ reconstructed fronp by as = (s, ¢).
which is defined using the Fourier basis and consists of sig- A basic problem in the new theory is introducing sys-
nals with a specified support of their Fourier representationtematic constructions of “good” effectively-sparse dictio-
However, for certain applications this approach is too renaries. Here “good” means that the size of the dictionary and
strictive. In a more general approach, the signal is charactetbe sparsity factoN are made as large as possible. Currently,
ized in terms of its expansion with respect to a frame, whictihe only known methods use either certain amount of ran-
is kind of a generalized basis. The theoryvadveletsis a ~ domness or are based on ad-hoc considerations (see [BDE]
particular application of this approach. As it turns out, manyand references therein). _ .
classical results from linear algebra have appropriate gener- In this short paper, we begin to develop a systematic ap-
alizations to the setting of frames. As a consequence, wavelgfoach to the construction of effectively sparse dictionaries
analysis exhibits structural similarity to Fourier analysis. ~ and, in particular, we describe two examples of such dictio-
Recently, a novel approach was introduced, hinting toharies. Our approach is based on the representation theory of
wards a fundamental change of perspective about the natugEoups over finite fields. . _ o
of signals. This new approach uses the notiosprse dic-  Showing that a dictionary is effectively-sparse is dif-
tionary which is yet another kind of generalized basis. Theficult. A way to overcome this difficulty is to introduce the
basic idea is the same as before, namely, a signal is charde@tion ofincoherent dictionaries
terized in terms of its expansion as a linear combination oDefinition 2. A set of unit length vecto® C 27 is calledu-
vectors in the dictionary. The main difference is that herecoherent dictionary, fob < u <« 1 if for every two different
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vectorss;,s; € D we have (s, s)| < €. Theorem 1. (Stone—von Neumann‘[here exists a uniqqe
The two notions of coherence and sparsity are related b{lP to isomorphism) irreducible unitary representation
the following proposition (see [BDE, DE, EB, GN, Tr]) mH, ) with the center acting by, i.e., 7iz = ¢ 1d .
Proposition 1. If ® is L-coherent therD is effectivelvl R |- The representatiomr which appears in the above the-
spaFr)selll Disg . V yLZJ orem will be called theHeisenberg representationMore

concretely,(1r,H, .7’) can be realized as follows# is the
In this paper we construct two incoherent dictionariesHilbert spaceC(Fp) of complex valued functions on the fi-
The first dictionary®y is called theHeisenbergdictionary  nite line, with the standard Hermitian product. The action
and is constructed using the representation theory of the finitg is given by m(1,0) > f (t) = f (t+ 1), 7(0,w) > f (t) =
Heisenberg group. It is\/l—ﬁ—coherent, consisting dD(p?) @ (wt) f (t) andm(z) > f (t) = @ (2) f (1)
vectors. This collection of vectors appears in the literature in , i
various contexts (e.g. [H, HCM]). Our aim here is merely2-3 The Weil representation
to clarify its representation theoretic origin and use it as & direct consequence of Theorem 1 is the existence of a
suggestive model example. projective representatiop : Sp— PU(.#). The construc-
The main contribution of this paper is the introduction oftion of p out of the Heisenberg representatiaris due to
a subtler dictionaryo, that we will call theoscillator dic-  Weil [W] and it goes as follows. Considering the Heisen-
tionary, which is constructed using the representation theongerg representatiom and an elemeng € Sp one can de-
of the two dimensional symplectic groi, (Fp). The rep-  fine a new representation? acting on the same Hilbert
resentation is known as the Weil representation. The grougpace viard® (h) = m1(g(h)). Clearly bothrr and 79 have
Sk (Fp) is the group of automorphism of the Heisenbergthe same central charactgrhence by Theorem 1 they are
group. The importance of the latter in signal processing issomorphic. Since the spadéomy (7, 79) is one dimen-
well known (see for recent account [FHKMN] and referencessional, choosing for everg € Spa non-zero representative
therein). We show in this paper that the Weil representatio(g) € Homy (11, 19) gives the required projective represen-
is a central object in digital signal processing. In particu-tation. In more concrete terms, the projective representation
lar it enables the construction of a dictionary whichjﬁ- p is characterized by the formula

coherent and consists @i(p®) vectors. We also introduce 1
a natural extension of this dictionary whichb%—coherent pl@n(hp(g) =m(gh). (1)

and consists oD(p°) signals. Signals i@ constitute, inan  for everyg € Spandh € H. It is a peculiar phenomenon
appropriate formal sense, a finite field analogue of the puref the finite field setting that the projective representafion
modes of the harmonic oscillator in the real setting. In thiscan be linearized into an honest representation
paper we explain the constructiondp and state some of itS  Theorem 2. ([GH2] and reference thereifhere exists a
properties which are relevant to sparsity, referring the readgfnique linear representation
to [GHS] for a more comprehensive treatment.
p:Sp— GL(),
2. THE HEISENBERG AND THE OSCILLATOR
DICTIONARIES which satisfies equatiofl).

2.1 The Heisenberg group 2.4 The Heisenberg dictionary

Let (V,w) be a two-dimensional symplectic vector spacer : - . .

over the finite field?,,. The reader should think & asF, x e Heisenberg dictionary is a collectionpi- 1 orthonor-

F.. with the standaFd formo ((1,w), (T',W)) = TW — V\‘;T, mal bases, each characterized, roughly, as eigenvectors of a

C%nsideringv as an abelian group, it admits a non-trivial SPECific linear operator. The most elegant way to define this

central extension called theeisenberggroup. Concretely, dictionary is using the Heisenberg representation.

tmhﬁlgpr)cl)ilégt-i' ocnagi\?: npg;sented asthebetV xFpwiththe 5 4 1 Bases associated with lines
The Heisenberg group is non-commutative, yet it consists

(v,2)-(V,Z)=(v+V,z+7Z + %w(v,\/)). of various commutative subgroups which can be easily de-
scribed. Letl C V be a line inV, one can associate toa
The center oH is Z=2Z(H) = {(O,z) = IFp}. The commutative subgroup. C H, A_ = {(I,_O) e _L}. It will
symplectic grougSp= SpV, w), which in this case is just b€ convenient to identify the grouly. with the lineL. Re-

isomorphic toSL, (F,,), acts by automorphism ¢1 through stricting the Heisenberg representatimto the commutative
its action on th&/-coordinate. subgroup yields a decomposition into character spaces

2.2 The Heisenberg representation I z@%’},
One of the most important attributes of the grddiis that it X

admits, principally, a unique irreducible reprexsentation. Th?/vherex runs in the set" of (complex valued) characters
precise statement goes as follows. YetZ — C* be a char- of L. More concretely, choosing a non-zero vedtar L

oni
acter of the center. For example we can tgk@) = e *. each character spac#; naturally corresponds to specific

'Here | § | stands for the greatest integer which is less then or equal to  2ynique, except in the case the finite fieldfs since the grousLy(Fp)
is perfect forp # 3 i.e. it has no multiplicative characters.

NI
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eigenspace of the linear operaftofl ). It is very easy to ver- in the more familiar setting of the fiel. Here, the stan-
ify that dard example of a maximal non-split torus is the circle group
Lemma 1. For everyx € LV we havedim.#, = 1. SQ2) C SLy(R). Indeed, it is a maximal commutative sub-
Choosing a unit vectop, € 7 we obtain an orthonor- group wh|qh bepomes diagonalizable when considered over
; . X X . : the extension field of complex numbers. The above anal-
mal basis which we denote bB, . Since there exists

p + 1 different lines inV, we have this number orthonor- 0gy suggests a way (o construct examples of maximal non-

mal bases, overall we constructed a dictionary of vectorg-p"t t_orj in the finite field setting. as well. Let us assume for
o = 19 e’BL 'L C V'] consisting ofp(p+ 1) vectors. We implicity that—1 does not admit a sguare root ify,. The

. - . ' groupSpacts naturally on the plan€é = F, x F,. Consider
will call the dictionary®y, for obvious reasons, théeisen- the symmetric bilinear for onV given by
berg dictionary The main property of the Heisenberg dictio-
nary is summarized in the following theorem [H, HCM] B((x,Y),(X,Y)) =xX +yy

Theorem 3. For every pair of different linek,M C V and

foreveryg € B, ¢ € By An example of maximal non-split torus is the subgroup

1 Ths C Spconsisting of all elementg € Sp preserving the
Ko, ¢)| = —. form B, namelyg € Tys if and only ifB(gu,gv) = B(u, V) for
VP everyu,v € V. The reader might think of,s as the "finite
circle”.

Example 1. There are two standard examples of bases of Restricting the Weil representation to a maximal torus
the formB,.. Considering the line§ = {(1,0):T€F,} T c Spyields a decomposition

andW = {(O,w) :weFp}, we haveBy = {a:acFp}

andBr = {ya:a€cFp}, whereg,(t) = %w(at). Indeed, H =P A, (2)
functions of the fornd, are common eigenvectors af0, w) X
and g, are common eigenvectors of(1,0). Finally, it can
be easily verified thdt(d,, Yp) | = % for everyd, € By and

Uy € Br. The content of Theorem 2.4.1 is that this exampl
is a particular case of a more general phenomena related t
a larger dictionary ofp+ 1 orthonormal bases.

where x runs in the sefTV of complex valued characters
of the torusT. More concretely, choosing a generator
§cT, the decomposition (2) naturally corresponds to the
%igenspaces of the linear operam(t). The decomposi-
tion (2) depends on the type &f If T is a split torus then

. - dimz7, = 1 unlessy = g, whereg is the unique quadratic
2.5 The Oscillator dictionary chara():(ter ofl (also called_egendrecharacter), in the latter
Reflecting back on the Heisenberg dictionary we see that tasedim.7Z; = 2. If T is a non-split torus thedim.#, = 1
was characterized in terms of commutative subgroups in thir every charactey which appears in the decomposition,
Heisenberg groupl via the Heisenberg representatimnin  in this case the quadratic charactedoes not appear in the
comparison, the oscillator dictionary [GHS] is characterizeddecomposition [GH1].

in terms of commutative subgroups of the symplectic group  Choosing for every charactey € TV, x # o, a unit

Spvia the Weil representatiop. vector ¢, € #; we obtain an orthonormal set of vectors
. . . . Br = {¢yx : X # 0}. We note that whefT is non-split the
2.5.1 Bases associated with maximal tori setBr is an orthonormal basis. Considering the union of all

A maximal (algebraic) torus iBpis a maximal commuta- these sets, we obtain the oscillator dictionary
tive subgroup which becomes diagonalizable over some field

extension. There exists two conjugacy classes of maximal Do={¢p €Br: T CSp}.
(algebraic) tori inSp The first class consists of those tori
which are diagonalizable already o\, these tori are con- It is convenient to separate the dictiona®y into two
jugated to the standard diagonal torus sub-dictionaries0g, and©F which correspond to the split
tori and the non-split tori respectively. The sub-dictionary
Tag = { (g aol) ‘ac ]Fp} . D consists o2 sets, each consisting pf- 2 orthonor-

mal vectors, altogethe#Ds = w. The non-split

A torus in this class is called split torus. The second Sub-dictionaryD’ consists ofp(p— 1) bases each consist-
class consists of those tori which become diagonalizable ovég of p orthonormal vectors, altogeth#® = p?(p— 1).
a quadratic extensioR >, these tori are not conjugated to The pscillator class satisfies many.desired properties [GHS].
Tsid- A torus in this class is called mon-splittorus (some- In this note we are only interested in the following:
times it is called inert torus)All split (non-split) tori are  Theorem 4[GHS]) For every € Br, and¢ € B,
conjugated to one another, therefore the number of split tori
is#(SP/Ns) = %, whereNs is the normalizer group of
some split torus. In the same fashion, the number of non-split {e.¢)] =
tori is #(Sp/Nns) = p(p—1), whereNys is the normalizer
group of some non-split torus.
Example 2.1t might be suggestive to explain further the no- sa maximal torusT in Sl (Fp) is a cyclic group, thus there exists a
tion of non-split tori by exploring, first, the analogue notion generator.

Sl
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Example 3. Consider the standard torubyg C Sp which  [DE]
is isomorphic to the multiplicative group;. Given a non-
trivial multiplicative charactef x : F5 — C*, we define the
functiony € C(Fy) by
X € C(Fp) EE]
L _x(t) t#0
=]
X { 0 t=0

We haveBt = {K X EGY X # 1}. Indeed, elements of the

standard torus act via the Weil representation, principally, by
scaling,p (a) > f (t) = o (t) f (at), hence the functioy is
an eigenvector op (a) for everyac T.

[GG]

2.5.2 Extended oscillator dictionary

The oscillator dictionary can be extended to a much largeiGH1]

dictionary using the action of the Heisenberg group. Given a
vector¢ € Do one can consider its orbit under the action of
theselv C H

Op =V -9 ={m(v)p:veV}.

It is not hard to show that orbits associated to differ—[GHS]

ent vectors are disjoint, therefore, we obtained a dictionary
De = U Oy, consisting o (V) - #(Do) ~ O(p°) vectors.
$eD
Interestingly, the extended dictionag continues to be [GN]
4p-coherent, this is a consequence of the following gener-
alization of Theorem 2.5.1

Theorem 5[GHS]) Given two vectorg, ¢ € ®o and an el- [H]
ementh € H such thath ¢ Z(H) then

(@, 71(h) )| < jﬁ

Remark A particular interpretation of Theorem 5 is that
any two different vector$ # ¢ € ©o are weakly coherent
in a stable sense, that is, their coherenc no mat-

ter if any one of them undergoes an arbitrary phase/time
shift. This property seems to be important in communica 1
tion where a transmitted signal may acquire time shift due to[W
asynchronous communication and phase shift due to Doppler
effect.

[Tr]

2.5.3 Field extension

All the results in this paper were stated for the basic finite
field Fp, wherep is an odd prime, for the reason of making
the terminology more accessible. In fact, all the results can
be stated and proved [GHS] for any field extension of the
form F =Fq, g= p", one should only replacp by q in all
appropriate places.
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