
DETERMINISTIC DICTIONARIES FOR SPARSITY:
A GROUP REPRESENTATION APPROACH

Shamgar Gurevich1, Ronny Hadani2, and Nir Sochen3

1Department of Mathematics, University of California Berkeley
Berkeley, CA 94720, USA

E-mail: shamgar@math.berkeley.edu

2Department of Mathematics, University of Chicago
Chicago, IL, 60637, USA

E-mail: hadani@math.uchicago.edu

3School of Mathematical Sciences, Tel Aviv University
Tel Aviv, 69978, Israel

E-mail: sochen@math.tau.ac.il

ABSTRACT

We describe two deterministic constructions of dictionaries
of functions on the finite line which support certain degree of
sparsity.

1. INTRODUCTION

Digital signals, or simply signals, can be thought of as func-
tions on the finite lineFp, namely the finite field withp
elements, wherep is an odd prime. The space of signals
H = C(Fp) is equipped with a natural Hermitian product

〈ϕ,φ〉= ∑
x∈Fp

ϕ (x)φ (x).

A central problem is constructing useful classes of sig-
nals that demonstrate strong descriptive power and at the
same time are characterized by formal mathematical condi-
tions. Meeting these two requirements is a non trivial task
and is a source for many novel developments in the field of
signal processing. The problem was tackled, over the years,
by various approaches.

In the classical approach, a signal is characterized in
terms of its expansion with respect to a specific basis. A stan-
dard example of this kind is the class ofband-limitedsignals
which is defined using the Fourier basis and consists of sig-
nals with a specified support of their Fourier representation.

However, for certain applications this approach is too re-
strictive. In a more general approach, the signal is character-
ized in terms of its expansion with respect to a frame, which
is kind of a generalized basis. The theory ofwaveletsis a
particular application of this approach. As it turns out, many
classical results from linear algebra have appropriate gener-
alizations to the setting of frames. As a consequence, wavelet
analysis exhibits structural similarity to Fourier analysis.

Recently, a novel approach was introduced, hinting to-
wards a fundamental change of perspective about the nature
of signals. This new approach uses the notion ofsparse dic-
tionary which is yet another kind of generalized basis. The
basic idea is the same as before, namely, a signal is charac-
terized in terms of its expansion as a linear combination of
vectors in the dictionary. The main difference is that here

the characterization is intrinsically non-linear. As a conse-
quence, one comes to deal with classes of signals which are
not closed with respect to addition. More formally:
Definition 1. A set D ⊂ H of signals is called anN-
independentset if every subsetD′ ⊂ D, with #D′ = N, is
linearly independent.

Given an2N-independent setD, every signalϕ ∈ H ,
has at most one expansion of the form

ϕ = ∑
s∈D′

ass,

for D′ ⊂ D with #D′ ≤ N. Such an expansion, if exists, is
unique and is called the sparse expansion. Consequently an-
other name for such a setD is anN-sparse dictionary. Given
that a signalϕ admits a sparse expansion, it is natural to ask
whether the coefficientsas can be effectively reconstructed.
A dictionaryD for which there exists a polynomial time al-
gorithm for reconstructing the ”sparse” coefficients is called
an effectivelyN-sparse dictionary.

To give the reader some feeling for the new concept, we
note that an orthonormal basis appears as a degenerate ex-
ample of an effectively sparse dictionary. More precisely, it
is dimH -sparse, consisting ofdimH signals. The effec-
tiveness follows from the fact that the coefficientas can be
reconstructed fromϕ by as = 〈s,ϕ〉.

A basic problem in the new theory is introducing sys-
tematic constructions of “good” effectivelyN-sparse dictio-
naries. Here “good” means that the size of the dictionary and
the sparsity factorN are made as large as possible. Currently,
the only known methods use either certain amount of ran-
domness or are based on ad-hoc considerations (see [BDE]
and references therein).

In this short paper, we begin to develop a systematic ap-
proach to the construction of effectively sparse dictionaries
and, in particular, we describe two examples of such dictio-
naries. Our approach is based on the representation theory of
groups over finite fields.

Showing that a dictionary is effectivelyN-sparse is dif-
ficult. A way to overcome this difficulty is to introduce the
notion of incoherent dictionaries.
Definition 2. A set of unit length vectorsD⊂H is calledµ-
coherent dictionary, for0≤ µ ¿ 1 if for every two different
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vectorss1,s2 ∈D we have|〈s1,s2〉| ≤ ε.
The two notions of coherence and sparsity are related by

the following proposition (see [BDE, DE, EB, GN, Tr])

Proposition 1. If D is 1
R-coherent thenD is effectively

⌊
R
2

⌋
-

sparse1.
In this paper we construct two incoherent dictionaries.

The first dictionaryDH is called theHeisenbergdictionary
and is constructed using the representation theory of the finite
Heisenberg group. It is 1√

p-coherent, consisting ofO(p2)
vectors. This collection of vectors appears in the literature in
various contexts (e.g. [H, HCM]). Our aim here is merely
to clarify its representation theoretic origin and use it as a
suggestive model example.

The main contribution of this paper is the introduction of
a subtler dictionaryDO, that we will call theoscillator dic-
tionary, which is constructed using the representation theory
of the two dimensional symplectic groupSL2 (Fp). The rep-
resentation is known as the Weil representation. The group
SL2 (Fp) is the group of automorphism of the Heisenberg
group. The importance of the latter in signal processing is
well known (see for recent account [FHKMN] and references
therein). We show in this paper that the Weil representation
is a central object in digital signal processing. In particu-
lar it enables the construction of a dictionary which is4√

p-

coherent and consists ofO(p3) vectors. We also introduce
a natural extension of this dictionary which is4√p-coherent

and consists ofO(p5) signals. Signals inDO constitute, in an
appropriate formal sense, a finite field analogue of the pure
modes of the harmonic oscillator in the real setting. In this
paper we explain the construction ofDO and state some of its
properties which are relevant to sparsity, referring the reader
to [GHS] for a more comprehensive treatment.

2. THE HEISENBERG AND THE OSCILLATOR
DICTIONARIES

2.1 The Heisenberg group

Let (V,ω) be a two-dimensional symplectic vector space
over the finite fieldFp. The reader should think ofV asFp×
Fp with the standard formω ((τ,w) ,(τ ′,w′)) = τw′−wτ ′.
ConsideringV as an abelian group, it admits a non-trivial
central extension called theHeisenberggroup. Concretely,
the groupH can be presented as the setH = V×Fp with the
multiplication given by

(v,z) · (v′,z′) = (v+v′,z+z′+ 1
2ω(v,v′)).

The center ofH is Z = Z(H) =
{
(0,z) : z∈ Fp

}
. The

symplectic groupSp= Sp(V,ω), which in this case is just
isomorphic toSL2 (Fp), acts by automorphism ofH through
its action on theV-coordinate.

2.2 The Heisenberg representation

One of the most important attributes of the groupH is that it
admits, principally, a unique irreducible representation. The
precise statement goes as follows. Letψ : Z→C× be a char-

acter of the center. For example we can takeψ (z) = e
2π i
p z.

1Here
⌊

R
2

⌋
stands for the greatest integer which is less then or equal to

R
2 .

Theorem 1. (Stone-von Neumann)There exists a unique
(up to isomorphism) irreducible unitary representation
(π,H,H ) with the center acting byψ, i.e.,π|Z = ψ · IdH .

The representationπ which appears in the above the-
orem will be called theHeisenberg representation. More
concretely,(π,H,H ) can be realized as follows:H is the
Hilbert spaceC(Fp) of complex valued functions on the fi-
nite line, with the standard Hermitian product. The action
π is given byπ(τ,0) B f (t) = f (t + τ), π(0,w) B f (t) =
ψ (wt) f (t) andπ(z) B f (t) = ψ (z) f (t).

2.3 The Weil representation

A direct consequence of Theorem 1 is the existence of a
projective representatioñρ : Sp→ PU(H ). The construc-
tion of ρ̃ out of the Heisenberg representationπ is due to
Weil [W] and it goes as follows. Considering the Heisen-
berg representationπ and an elementg ∈ Sp, one can de-
fine a new representationπg acting on the same Hilbert
space viaπg (h) = π (g(h)). Clearly bothπ and πg have
the same central characterψ hence by Theorem 1 they are
isomorphic. Since the spaceHomH(π,πg) is one dimen-
sional, choosing for everyg ∈ Spa non-zero representative
ρ̃(g) ∈ HomH(π,πg) gives the required projective represen-
tation. In more concrete terms, the projective representation
ρ̃ is characterized by the formula

ρ (g)π (h)ρ
(
g−1) = π (g(h)) , (1)

for everyg ∈ Spandh ∈ H. It is a peculiar phenomenon
of the finite field setting that the projective representationρ̃
can be linearized into an honest representation
Theorem 2. ([GH2] and reference therein)There exists a
unique2 linear representation

ρ : Sp−→GL(H ),

which satisfies equation(1).

2.4 The Heisenberg dictionary

The Heisenberg dictionary is a collection ofp+1 orthonor-
mal bases, each characterized, roughly, as eigenvectors of a
specific linear operator. The most elegant way to define this
dictionary is using the Heisenberg representation.

2.4.1 Bases associated with lines

The Heisenberg group is non-commutative, yet it consists
of various commutative subgroups which can be easily de-
scribed. LetL ⊂ V be a line inV, one can associate toL a
commutative subgroupAL ⊂ H, AL = {(l ,0) : l ∈ L}. It will
be convenient to identify the groupAL with the lineL. Re-
stricting the Heisenberg representationπ to the commutative
subgroupL yields a decomposition into character spaces

H =
⊕

χ
Hχ ,

whereχ runs in the setL∨ of (complex valued) characters
of L. More concretely, choosing a non-zero vectorl ∈ L,
each character spaceHχ naturally corresponds to specific

2Unique, except in the case the finite field isF3. since the groupSL2(Fp)
is perfect forp 6= 3 i.e. it has no multiplicative characters.
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eigenspace of the linear operatorπ (l). It is very easy to ver-
ify that
Lemma 1. For everyχ ∈ L∨ we havedimHχ = 1.

Choosing a unit vectorϕχ ∈Hχ we obtain an orthonor-
mal basis which we denote byBL. Since there exists
p+ 1 different lines inV, we have this number orthonor-
mal bases, overall we constructed a dictionary of vectors
DH = {ϕ ∈ BL : L⊂V} consisting ofp(p+1) vectors. We
will call the dictionaryDH , for obvious reasons, theHeisen-
berg dictionary. The main property of the Heisenberg dictio-
nary is summarized in the following theorem [H, HCM]
Theorem 3. For every pair of different linesL,M ⊂ V and
for everyϕ ∈ BL, φ ∈ BM

|〈φ ,ϕ〉|= 1√
p

.

Example 1. There are two standard examples of bases of
the formBL. Considering the linesT =

{
(τ,0) : τ ∈ Fp

}
and W =

{
(0,w) : w∈ Fp

}
, we haveBW =

{
δa : a∈ Fp

}

andBT =
{

ψa : a∈ Fp
}

, whereψa (t) = 1√
pψ (at). Indeed,

functions of the formδa are common eigenvectors ofπ (0,w)
and ψa are common eigenvectors ofπ (τ,0). Finally, it can
be easily verified that| 〈δa,ψb〉 |= 1√

p for everyδa ∈BW and

ψb ∈ BT . The content of Theorem 2.4.1 is that this example
is a particular case of a more general phenomena related to
a larger dictionary ofp+1 orthonormal bases.

2.5 The Oscillator dictionary

Reflecting back on the Heisenberg dictionary we see that it
was characterized in terms of commutative subgroups in the
Heisenberg groupH via the Heisenberg representationπ. In
comparison, the oscillator dictionary [GHS] is characterized
in terms of commutative subgroups of the symplectic group
Spvia the Weil representationρ.

2.5.1 Bases associated with maximal tori

A maximal (algebraic) torus inSp is a maximal commuta-
tive subgroup which becomes diagonalizable over some field
extension. There exists two conjugacy classes of maximal
(algebraic) tori inSp. The first class consists of those tori
which are diagonalizable already overFp, these tori are con-
jugated to the standard diagonal torus

Tstd =
{(

a 0
0 a−1

)
: a∈ Fp

}
.

A torus in this class is called asplit torus. The second
class consists of those tori which become diagonalizable over
a quadratic extensionFp2, these tori are not conjugated to
Tstd. A torus in this class is called anon-split torus (some-
times it is called inert torus). All split (non-split) tori are
conjugated to one another, therefore the number of split tori
is #(Sp/Ns) = p(p+1)

2 , whereNs is the normalizer group of
some split torus. In the same fashion, the number of non-split
tori is #(Sp/Nns) = p(p−1), whereNns is the normalizer
group of some non-split torus.
Example 2. It might be suggestive to explain further the no-
tion of non-split tori by exploring, first, the analogue notion

in the more familiar setting of the fieldR. Here, the stan-
dard example of a maximal non-split torus is the circle group
SO(2) ⊂ SL2(R). Indeed, it is a maximal commutative sub-
group which becomes diagonalizable when considered over
the extension fieldC of complex numbers. The above anal-
ogy suggests a way to construct examples of maximal non-
split tori in the finite field setting as well. Let us assume for
simplicity that−1 does not admit a square root inFp. The
groupSpacts naturally on the planeV = Fp×Fp. Consider
the symmetric bilinear formB onV given by

B((x,y),(x′,y′)) = xx′+yy′.

An example of maximal non-split torus is the subgroup
Tns ⊂ Sp consisting of all elementsg ∈ Sp preserving the
form B, namelyg∈ Tns if and only ifB(gu,gv) = B(u,v) for
everyu,v ∈ V. The reader might think ofTns as the ”finite
circle”.

Restricting the Weil representation to a maximal torus
T ⊂ Spyields a decomposition

H =
⊕

χ
Hχ , (2)

where χ runs in the setT∨ of complex valued characters
of the torusT. More concretely, choosing a generator3

t ∈ T, the decomposition (2) naturally corresponds to the
eigenspaces of the linear operatorρ (t). The decomposi-
tion (2) depends on the type ofT. If T is a split torus then
dimHχ = 1 unlessχ = σ , whereσ is the unique quadratic
character ofT (also calledLegendrecharacter), in the latter
casedimHσ = 2. If T is a non-split torus thendimHχ = 1
for every characterχ which appears in the decomposition,
in this case the quadratic characterσ does not appear in the
decomposition [GH1].

Choosing for every characterχ ∈ T∨, χ 6= σ , a unit
vector ϕχ ∈ Hχ we obtain an orthonormal set of vectors
BT =

{
ϕχ : χ 6= σ

}
. We note that whenT is non-split the

setBT is an orthonormal basis. Considering the union of all
these sets, we obtain the oscillator dictionary

DO = {ϕ ∈ BT : T ⊂ Sp} .

It is convenient to separate the dictionaryDO into two
sub-dictionariesDs

O andDns
O which correspond to the split

tori and the non-split tori respectively. The sub-dictionary
Ds

O consists ofp(p+1)
2 sets, each consisting ofp−2 orthonor-

mal vectors, altogether#Ds = p(p+1)(p−2)
2 . The non-split

sub-dictionaryDns
O consists ofp(p−1) bases each consist-

ing of p orthonormal vectors, altogether#Dns
O = p2(p−1).

The oscillator class satisfies many desired properties [GHS].
In this note we are only interested in the following:

Theorem 4([GHS]) For everyφ ∈ BT1 andϕ ∈ BT2

|〈φ ,ϕ〉| ≤ 4√
p
.

3A maximal torusT in SL2 (Fp) is a cyclic group, thus there exists a
generator.
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Example 3. Consider the standard torusTstd ⊂ Sp, which
is isomorphic to the multiplicative groupF×p . Given a non-
trivial multiplicative character4 χ : F×p → C×, we define the
functionχ ∈ C(Fp) by

χ(t) =
{ 1√

p−1
χ(t) t 6= 0

0 t = 0
.

We haveBT =
{

χ : χ ∈G∨
m, χ 6= 1

}
. Indeed, elements of the

standard torus act via the Weil representation, principally, by
scaling,ρ (a) B f (t) = σ (t) f (at), hence the functionχ is
an eigenvector ofρ (a) for everya∈ T.

2.5.2 Extended oscillator dictionary

The oscillator dictionary can be extended to a much larger
dictionary using the action of the Heisenberg group. Given a
vectorϕ ∈DO one can consider its orbit under the action of
the setV ⊂ H

Oϕ = V ·ϕ , {π (v)ϕ : v∈V} .

It is not hard to show that orbits associated to differ-
ent vectors are disjoint, therefore, we obtained a dictionary
DE =

⋃
ϕ∈D

Oϕ , consisting of#(V) ·#(DO)∼O(p5) vectors.

Interestingly, the extended dictionaryDE continues to be
4√
p-coherent, this is a consequence of the following gener-

alization of Theorem 2.5.1
Theorem 5([GHS]) Given two vectorsϕ ,φ ∈DO and an el-
ementh∈ H such thath /∈ Z(H) then

|〈ϕ,π (h)φ〉| ≤ 4√
p

.

Remark A particular interpretation of Theorem 5 is that
any two different vectorsϕ 6= φ ∈ DO are weakly coherent
in a stable sense, that is, their coherence is4√

p no mat-

ter if any one of them undergoes an arbitrary phase/time
shift. This property seems to be important in communica-
tion where a transmitted signal may acquire time shift due to
asynchronous communication and phase shift due to Doppler
effect.

2.5.3 Field extension

All the results in this paper were stated for the basic finite
field Fp, wherep is an odd prime, for the reason of making
the terminology more accessible. In fact, all the results can
be stated and proved [GHS] for any field extension of the
form F = Fq, q = pn, one should only replacep by q in all
appropriate places.
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