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ABSTRACT

Inspired by the wavelet soft thresholding principle, shrinkage meth-
ods suited for the thresholding of the decomposition modes result-
ing from applying EMD to a signal are developed in this paper. We
show, that although a direct application of this principle is not fea-
sible in the EMD case, it can be appropriately adapted by exploit-
ing the special characteristics of the EMD decomposition modes.
Moreover, the SCAD thresholding rule is also incorporated and an
iterative soft thresholding procedure is proposed which leads to en-
hanced denoising performance.

1. INTRODUCTION

The Empirical mode decomposition (EMD) method [1], [2], [3] is
an algorithm for the analysis of multicomponent signals [4] that
breaks them down into a number, say L, of amplitude and frequency

modulated (AM/FM) signals, h(i)(t), i = 1,2, . . . ,L, termed intrin-
sic mode functions (IMFs). In contrast to conventional decomposi-
tion methods such as wavelets, which perform the analysis by pro-
jecting the signal under consideration onto a number of predefined
basis vectors, EMD expresses the signal as an expansion of basis
functions which are signal-dependent, and are estimated via an it-
erative procedure called sifting. By construction, the IMFs share
the following properties: They are zero mean, all their maxima and
minima are positive and negative respectively and they are narrow-
band signals allowing for the existence of both amplitude and fre-
quency modulation (AM/FM). In other words, the N(i) extrema of

h(i)(t) positioned at time instances r
(i) = [r

(i)
1 , r

(i)
2 , . . . , r

(i)
N(i)

] and

the corresponding IMF points h(i)(r
(i)
j ), j = 1, . . . , N(i) will alter-

nate between maxima and minima, i.e., positive and negative values.

As a result, in any pair of extrema, r
(i)
j = [h(i)(r

(i)
j ),h(i)(r

(i)
j+1)], cor-

responds a single zero-crossing z
(i)
j . Moreover, each IMF, say the

one of order i, have fewer extrema than all the lower order IMFs,
j = 1, . . . , i− 1, occupying lower frequencies locally in the time-
frequency domain than preceding ones. Fig. 1 depicts, as an ex-
ample the first, fifth, sixth and ninth IMF resulting from the EMD
analysis of a well studied piece-wise regular signal [5] (Fig. 1a) cor-
rupted by white Gaussian noise corresponding 5dB signal to noise
power ratio (SNR).

One of the tasks in which EMD can prove to be useful is sig-
nal denoising. In this paper, inspired by wavelet soft-thresholding,
novel EMD-based denoising techniques are developed and tested
in different signal scenarios. It is also shown, that although the
main principles between wavelet and EMD soft thresholding are
the same, in the case of EMD, the thresholding operation has to be
properly adapted in order to be consistent with the special charac-
teristics of the signal modes resulting from EMD.

2. WAVELET SOFT-THRESHOLDING

Employing a chosen orthonormal wavelet basis, an orthogonal N ×
N matrix W is appropriately built [6] which in turn leads to the
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Figure 1: Empirical mode decomposition of the noisy signal shown
in (a).

discrete wavelet transform (DWT)

c = Wx

where, x= [x(1), x(2), . . . , x(N)] is the vector of the signal samples
and c = [c1, c2, . . . , cN ] contains the resultant wavelet coefficients.
Under white Gaussian noise conditions and due to the orthogonality
of matrix W, any wavelet coefficient ci follows normal distribution
with variance the noise variance σ and mean the corresponding co-
efficient value c̄i of the DWT of the noiseless signal x̄(t). Provided
that the signal under consideration is sparse in the wavelet domain
the DWT is expected to distribute the total energy of x̄(t) in only
a few wavelet components lending themselves to high amplitudes.
As a result, the amplitude of most of the wavelet components is at-
tributed to noise only. The fundamental reasoning of wavelet soft
thresholding is to set to zero all the components which are lower
than a threshold related to noise level and appropriately shrink the
rest of the components by an amount equal to the threshold. More
specifically, the soft thresholding operator is defined by:

ρT (y) =

{

sgn(y)(|y|−T ), |y| > T
0, |y| ≤ T,

(1)

where, sgn indicates the sign function. Then, the estimated denoised
signal is given by

x̃ = W
T
c̃ (2)

where, c̃ = [ρT (c1), ρT (c2), . . . , ρT (cN)] and W
T denotes trans-

position of matrix W.
The conventional soft-thresholding rule shifts the estimator by

an amount of T even when the wavelet components have energy
well beyond the noise level creating unnecessary bias. Such an
effect can be reduced by the smoothly clipped absolute deviation
(SCAD) penalty [7] which is a more complex thresholding strategy



in order not to penalize the wavelet components having large values.
The SCAD threshold is given by:

ρT (y) =







sgn(y)max(0, |y|−T ), |y| ≤ 2T
(α−1)y−αTsgn(y)

α−2 , 2T < |y| ≤ αT

y, |y| > αT,

(3)

where, α , based on Bayesian arguments, is recommended to set
equal to 3.7. Apart from the soft thresholding methods described
above, their translation invariant [5] versions are of interest and they
will be studied in the simulation section.

3. EMPIRICAL MODE DECOMPOSITION BASED

SOFT-THRESHOLDING

EMD performs a subband like filtering resulting in essentially un-
correlated IMFs [8], [9]. Although the equivalent filter-bank struc-
ture is by no means pre-determined and fixed as in wavelet decom-
position, one can in principle perform thresholding in each IMF in
order to locally exclude low energy IMF parts which are expected to
be significantly corrupted by noise. Some preliminary results have
already appeared very recently in [10], [11], [12] where the wavelet
thresholding idea is directly applied to the EMD case. For example,
in the case of standard soft thresholding, a direct application in the
EMD case translates to:

h̃(i)(t) =

{

sgn(h(i)(t))(|h(i)(t)|−Ti), |h(i)(t)| > Ti

0, |h(i)(t)| ≤ Ti,
(4)

where, h̃(i)(t) indicates the ith thresholded IMF. The reason for
adopting different thresholds Ti per mode i will become clearer in
the sequel.

A generalised reconstruction of the denoised signal is given by

x̂(t) =
M2

∑
i=M1

h̃(i)(t)+
L

∑
i=M2+1

h(i)(t) (5)

where, the introduction of parameters M1 and M2 gives us flexibility
on the exclusion of the noisy low order IMFs and on the optional
thresholding of the high order ones which in white Gaussian noise
conditions contain little noise energy.

As it has been discussed in [13] the direct application of hard
thresholding to the decomposition modes is in principle wrong
introducing significant discontinuities in the reconstructed signal.
This is happening due to the fact that IMFs resemble an AM/FM
modulated sinusoid with zero mean. As a result, it is guaranteed

that, even in a noiseless case, in any interval z
(i)
j = [z

(i)
j z

(i)
j+1], the

absolute amplitude of the ith IMF, i = 1, 2, . . . ,N, will drop below

any non-zero threshold in the proximity of the zero-crossings z
(i)
j

and z
(i)
j+1. Similar arguments are valid in the case of soft threshold-

ing. A solution to this drawback of direct thresholding is to infer for

each one of the intervals z
(i)
j if they are noise-dominant or signal-

dominant based on the single extrema h(i)(r
(i)
j ) that correspond to

this interval. If the signal is absent, the absolute value of this ex-
trema will lie below the threshold. Alternatively, in the presence
of strong signal, the extrema value can be expected to exceed the
threshold. Practically, the result of wavelet soft thresholding on,
e.g. positive wavelet components that exceed the threshold is that
the latter is shrinked by an amount equal to the threshold. With re-
spect to soft thresholding all the IMF samples that corresponds to
zero-crossing interval with extremum exceeding the threshold have
to be reduced in a smooth way in order for the extremum to get re-
duced exactly by an amount equal to the threshold. Fig. 2 describes
the similarities between wavelet and EMD soft thresholding. Af-
ter wavelet soft thresholding (Fig. 2a), all the original components,
shown with thick gray lines, which are larger in absolute value from

the threshold, shown with green line, are shrinked by the value of
the threshold T . The rest of the components are set to zero. In the
case of EMD soft thresholding, the extrema of the thresholded IMF,
which are the extrema having absolute value that exceed the thresh-
old are lower by the value of T compared to the original ones. The
values of the IMF points belonging to the zero-crossing interval of
the thresholded extrema are linearly reduced as well. The rest of the
IMF values are set to zero.

Mathematically, the described soft thresholding operation,
hereafter referred to as EMD soft interval thresholding (EMD-SIT),
yelds:

h̃(i)(z
(i)
j ) =











h(i)(z
(i)
j )

|h(i)(r
(i)
j )|−Ti

|h(i)(r
(i)
j )|

, |h(i)(r
(i)
j )| > Ti

0, |h(i)(r
(i)
j )| ≤ Ti,

(6)

The thresholding rule above guaranties that when any extremum

|h(i)(r
(i)
j )| exceeding the threshold its thresholding lead to a shrink

extremum expressing by h̃(i)(r
(i)
j ) = sgn(h(i)(r

(i)
j ))(|h(i)(r

(i)
j )|−Ti).
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Figure 2: Wavelets (a) and EMD (b) soft thresholding. Thick gray
lines indicate the wavelet components and the IMF before thresh-
olding and dark thin lines shows the result of soft thresholding.

Similarly to (6), the SCAD rule of Eq. (3) in the case of EMD
thresholding translates to:

h̃(i)(z
(i)
j )=























h(i)(z
(i)
j )

max(0,|h(i)(r
(i)
j )|−Ti)

|h(i)(r
(i)
j )|

, |h(i)(r
(i)
j )| ≤ 2Ti

h(i)(z
(i)
j )

(α−1)|h(i)(r
(i)
j )|−αTi

(α−2)|h(i)(r
(i)
j )|

, 2Ti < |h(i)(r
(i)
j )| ≤ αTi

1, |h(i)(r
(i)
j )| > αTi,

(7)
With respect to the threshold selection, the universal thresh-

old T = σ
√

2lnN, with N being the signal length, is a popular
candidate. In this study, multiples of the universal threshold, i.e.,

Cσ
√

2lnN will be used, where C is a constant. The standard devi-
ation of the noise, in the case of wavelet thresholding, is estimated
using robust median-based estimation [5]. A somewhat different
approach have to be followed for the estimation of the EMD-based
denoising thresholds. In contrast to wavelet denoising where thresh-
olding is applied to the wavelet components, in the EMD case,
thresholding is applied to the N samples of each IMF which are
basically the signal portion contained in each adaptive subband.
An equivalent procedure in the wavelet method would be to per-
form thresholding on the reconstructed signals after performing the



synthesis function on each scale separately. As a consequence, the
IMF samples are not Gaussian distributed with variance equal to the
noise variance as the wavelet components are irrespective of scale.

In fact, the noise contained in each IMF is coloured1 having differ-
ent energy in each mode. In that sense, EMD denoising is mostly
related to wavelet denoising of signals corrupted by coloured noise
where the thresholds have to be scale dependent. In our study of
thresholds, multiples of the IMF dependent universal threshold, i.e.,
Ti = C

√
Ei2lnN, where Ei is the energy of the ith IMF that result

from the EMD analysis of white Gaussian noise having variance the
variance of noise which corrupts the signal under consideration are
used. It has been shown [8] that Ei, i = 2,3, · · · ,L can be estimated
using equation

Êi =
E1

0.719
2.01−i

, i = 2, 3, 4, . . . (8)

where, E1 is the variance of the first IMF. Note that the approxi-
mation (8) is slightly dependent on the number of sifting iterations
as it has been stated in [8]. However, although it is apparently not
optimal with respect to the number of sifting iterations used in the
simulations section, it appeared to be accurate enough at least for
the EMD configurations adopted in this paper.

Matlab scripts for implementing the EMD-based soft
thresholding methods presented here can be found online at
http://www.see.ed.ac.uk/∼ykopsini/emd/emd.html

4. ITERATIVE EMD INTERVAL-THRESHOLDING

Denoising performance can be improved by using the iterative
scheme introduced in [13]. According to this, a number of denoised
versions of the signal under consideration are obtained iteratively in
order to enhance the tolerance against noise by averaging them. The
different denoised versions of the noisy signal are constructed by
decomposing different noisy versions of the signal under consider-
ation itself. The answer on how, having a signal buried in noise, can
we produce different noisy versions of the actual noise-free signal
stems from within the EMD concept exploiting the characteristics
of the first IMF. We know that in white Gaussian noise conditions,
the first IMF is mainly noise, and more specifically comprises the
larger amount of noise compared to the rest of the IMFs. By ran-
dom circulating the samples of the first IMF and then adding the
resulting noise signal to the sum of the rest of the IMFs we can
obtain a different noisy-version of the original signal. In fact, in
the case where the first IMF consists of noise only, then the total
noise variance of the newly generated noisy-signal is the same as
the original one. However, when the signal SNR is high, is likely
to contain some signal portions as well. If this is the case, then by
randomly circulating the samples of the first IMF, the information
signal carried on it will spread out contaminating the rest of the sig-
nal along its length. In such an unfortunate situation, the denoising
performance will decline. In order to bypass this disadvantage, in
this paper we present a moderate modification of the scheme above.
It is not the first IMF that is directly circulated but the first IMF after
having all the parts of the useful information signal that it contains
removed. The “extraction” of the information signal from the first
IMF can be realized with any thresholding method, either EMD-
based or wavelet-based. It is important to note that any useful sig-
nal resulting from the thresholding operation of the first IMF has to
summed up with the partial reconstruction of the last L−1 IMFs.

The above EMD denoising technique, hereafter refered to as
clear first IMF Iterative EMD soft interval-thresholding (EMD-
SCIIT) is summarised in the following steps:

1. Perform an EMD expansion of the original noisy signal x.

2. Perform a thresholding operation to the first IMF of x(t) to ob-

tain a denoised version h̃(1)(t) of h(1)(t).

1There is strong evidence that at least in the noise-only case the distribu-

tion of the IMF samples is still Gaussian [9].
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Figure 3: The result of the wavelet translation invariant with
SCAD soft thresholding rule (a) and the EMD-SCIIT with SCAD
thresholidng 20 iterations (b). (c) shows the achieved SNR w.r. to
the number of iterations.

3. Compute the actual noise signal that existed in h(1)(t),

h
(1)
n (t)=h(1)(t)− h̃(1)(t)

4. Perform a partial reconstruction using the last L − 1 IMFs
plus the information signal contained in the first IMF, xp(t) =

∑L
i=2 h(i)(t)+ h̃(1)(t).

5. Randomly circulate the sample positions of the noise-only part

of the first IMF, h
(1)
a (t) = CIRCULATE(h

(1)
n (t)).

6. Construct a different noisy version of the original signal, xa(t) =

xp(t)+h
(1)
a (t).

7. Perform EMD on the new noisy signal xa(t).
8. Perform the EMD-SIT denoising (Eq. 6 or 7) on the IMFs of

xa(t) to obtain a denoised version x̃1(t) of x.

9. Iterate K − 1 times between steps 5-8 , where K is the number
of averaging iterations in order obtain K denoised versions of x,
i.e., x̃1, x̃2, . . . , x̃K .

10. Average the resulted denoised signals x̃(t) = 1
K ∑K

k=1 x̃k(t) in or-
der to obtain the final denoised signal estimate.

Doppler Signal

(a)

(b)

Speech Signal

Figure 4: Some of the signals used for validation of the denoising
methods.

Fig. 3a shows the denoising result when wavelet transla-
tion invariant with SCAD soft thresholding rule is applied on the



piecewise-regular signal. For comparison, the denoised signal that
result from 20 iterations K, of EMD-SCIIT with SCAD threshold-
ing. The SNRs achieved with the two methods are illustrated at the
top left corner of the figures. The noisy signal used was that de-
scribed in Fig. 1a. The proposed iterative procedure has enhanced
the denoising capabilities of EMD as it can be seen in Fig. 3c where
the increment in SNR of the denoised signal is plotted with respect
to the number of iterations. In both Wavelet and EMD denoising
the threshold value used was half the universal threshold since it
has been considered an appropriate choice when soft thresholding
is used [5]. However, in the simulations section, a broader range of
threshold values will be examined.

5. SIMULATION RESULTS

Apart from the piecewise-regular signal, the Doppler test signal
shown in Fig. 4a and a real speech signal segment (Fig. 4b) have
been used for the validation of the proposed denoising techniques.
Each of the artificial test signals is sampled and tested with four
different sampling frequencies resulting in four versions per signal
having 1024, 2048, 4096 and 8192 samples. The adopted wavelet
filter is the symmlet of order 8 and the EMD is realised using 8 sift-
ing iterations per IMF extraction. The adoption of a fixed number of
sifting iterations might lead to modes which do not strictly comply
with the IMF characteristics. More specifically, it is possible to find
two or even more maxima (or minima) between neighboring zero-
crossings. In such cases, the thresholding is naturally performed
based on the largest (smallest) value of the maxima (minima) ly-
ing between consecutive zero-crossings. The results shown corre-
spond to ensemble average of 50 independent noise generalizations.
Moreover, the adopted performance measure is the SNR after de-
noising which corresponds to SNR values of 0, 5, 10 and 15 dB
before denoising. To start with, a thorough denoising performance
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Figure 5: Denoising performance of different wavelet soft thresh-
olding techniques.

evaluation of the developed and wavelet-based methods is realised
using the piece-wise regular signal. Fig. 5 depicts the performance
comparison between the standard (Soft-T) and translation invari-
ant (Soft-TI) wavelet soft thresholding techniques including their
SCAD versions. The performance curves correspond to SNR after
denoising versus number of signal samples and they are grouped in
4 sets associated with 15dB SNR before denoising (dashed-dotted
curves), 10dB SNR (dotted curves), 5dB SNR (solid curves) and
0dB SNR (dashed curves). We observe that the more robust perfor-
mance is achieved with the translation invariant method when the
SCAD thresholding rule is used which outperforms the rest of the
methods especially when the noise is relatively low (15 dB). With

respect to the newly developed EMD-based methods (Fig. 6) the
soft EMD interval thresholding with (EMD SCAD-SIT) and with-
out (EMD-SIT) the SCAD rule are examined together with their
iterative counterparts (EMD SCAD-SCIIT and EMD-SCIIT) using
20 iterations. It can be seen that the iterative thresholding principle
leads to enhanced performance irrespectively of the noise level and
SCAD threshold is helpful when the signal SNR is 5dB and above.
In all the simulations above and the ones that follows, the SNR
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Figure 6: Denoising performance of different EMD soft threshold-
ing techniques.

values shown correspond to optimized values for the several pa-
rameters that each method use such as the primary resolution level
for the wavelet based denoising techniques and parameters M1, M2

of equation (5) for the EMD based denoising. The utility of pa-

10241024 20482048 40964096

# of samples# of samples

S
N

R
 a

ft
er

 d
en

o
is

in
g

81928192

EMD-SCIIT

Soft - TI

EMD SCAD-SCIIT

Soft SCAD - TI

10

15

20

25

30

Figure 7: Performance of the piecewise-regular signal denoising.

rameter M2 is similar to the primary resolution level in the case
of wavelet thresholding, which indicates the level above which the
wavelet components are thresholded. In the current study, an aver-
age choice of M2 was 4. Moreover, it is worthy to note that when
the SCAD principle is adopted, the choice of M2 is less critical than
when standard soft thresholding is used. With respect to M1 is good
to get reduced as the noise level decreases starting from 4 for 0dB
SNR and going to 1 for 15 dB. Finally, the best among 9 thresh-
old values was tested for each one of the different SNR/sampling



frequency simulation setups. The 9 thresholds were calculated by
multiplication of the universal threshold with the constants 0.2 up
to 1 with steps of 0.1. It turned out that in the vast majority of
simulation examples and all the different simulation setups, the best
threshold for the EMD-based methods was found to be between 0.3
to 0.4 times the universal threshold with a small performance dis-
crepancy for any threshold between the above values. The picture is
similar in the case of wavelet thresholding with the difference that
the optimum threshold values were 0.4 and 0.5 times the universal
threshold when the translation invariant principle is used and 0.5 to
0.7 when the translation invariant principle was not used.

In Fig. 7, a comparison between the translation invariant
wavelet and the iterative thresholding EMD techniques is depicted.
We observe that EMD-based denoising using SCAD threshold out-
performs the wavelet-based techniques especially when the noise
is high. However, as long as the noise increases, Soft SCAD-TI
reaches end even exceeds the EMD performance. This trend is sim-
ilar to the one observed in the case of hard thresholding [13]. For
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Figure 8: Performance of the Doppler signal denoising.

the case of the Doppler signal shown in Fig. 4(a), the performance
results are illustrated in Fig. 8. Similar conclusions with the ones of
the piecewise-regular signal can be drawn with the only difference
that the achieved improvement when the SCAD threshold is used is
more profound.

Methods
SNR

0 dB 5 dB 10 dB 15 dB

EMD-CIIT 9.99 13.32 16.63 20.25

EMD SCAD-CIIT 10.8 13.93 17.34 20.86

Soft-TI 8.55 12.06 15.58 19.44

Soft SCAD-TI 9.59 13.25 16.75 20.4

Table 1: SNR performance of EMD and wavelet-based denoising
methods applied on a speech signal.

The SNR of the denoised speech signal of Fig. 4b and the corre-
sponding variances of the SNR estimates over the 50 ensemble av-
erages are shown in Tables 1 and 2 respectively. We observed that
with this real signal the proposed denoising techniques performs
with a similar to the test signals way. Moreover, the variance that the
EMD denoising exhibits is slightly higher than that of the wavelet
thresholding techniques. With respect to computational complexity,
the EMD-based denoising is much more demanding than wavelet
thresholding. However, although significant complexity reduction
of EMD is feasible, low complexity EMD variants have not yet ap-
peared in the literature.

Methods
Variance

0 dB 5 dB 10 dB 15 dB

EMD-CIIT 0.053 0.023 0.023 0.019

EMD SCAD-CIIT 0.038 0.027 0.021 0.019

Soft-TI 0.032 0.022 0.016 0.015

Soft SCAD-TI 0.031 0.021 0.014 0.016

Table 2: Variance of EMD and wavelet-based denoising methods
when applied on a speech signal.

6. CONCLUSIONS

In this paper, two of the wavelet soft thresholding operators were
modified in order to suit to the special characteristics of EMD
modes. Moreover, an iterative scheme for improved EMD denois-
ing performance was developed. The new algorithms, have been
tested with two well studied signals in high to moderate noise sce-
narios and their performance was compared with wavelet threshold-
ing methods. It turned out, that the iterative EMD denoising method
outperforms the wavelet thresholding techniques in the cases that
the signal SNR does not exceed 15 dB.
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