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ABSTRACT 
 
The aim of this work is to utilize both audio and visual 
speech information to create a robust voice activity 
detector (VAD) that operates in both clean and noisy 
speech. A statistical-based audio-only VAD is developed 
first using MFCC vectors as input. Secondly, a visual-only 
VAD is produced which uses 2-D discrete cosine transform 
(DCT) visual features. The two VADs are then integrated 
into an audio-visual VAD (AV-VAD). A weighting term is 
introduced to vary the contribution of the audio and visual 
components according to the input signal-to-noise ratio 
(SNR). Experimental results first establish the optimal 
configuration of the classifier and show that higher 
accuracy is obtained when temporal derivatives are 
included. Tests in white noise down to an SNR of -20dB 
show the AV-VAD to be highly robust with accuracy 
remaining above 97%. Comparison with the ETSI Aurora 
VAD shows the AV-VAD to be significantly more accurate. 
 
 

1. INTRODUCTION 
 
Voice activity detection (VAD) is the process of 
distinguishing speech from non-speech and as such VADs 
are found in many different speech processing applications 
[1]. Some of the most common uses of VADs are in noise 
estimation and reduction. For noise estimation, the VAD is 
used to identify regions of non-speech from which 
estimates of noise are computed. In noise reduction, the 
VAD identifies speech regions which are then filtered to 
remove the noise. Traditionally, VADs extract features 
from the input audio and use these features to determine 
whether or not speech is present. Typical VAD features 
include signal energy, spectral tilt and zero crossing rate. 
VAD accuracy can be very high in clean speech, but at 
lower signal-to-noise ratios (SNRs) accuracy deteriorates 
significantly. At these lower SNRs the majority of errors 
incurred are when noise falsely causes the VAD to classify 
non-speech as speech. 

In this work it is proposed to improve VAD robustness 
in noise by extracting from the speaker both audio and 
visual speech features and using this joint information for 
classification. Visual speech features have the significant 
advantage that they are not distorted by acoustic noise and 

have been used in a visual-only VAD previously which 
gave good accuracy [2]. However, a disadvantage with 
visual speech features is that they are not as discriminative, 
in terms of speech or sound classes, as audio speech 
features. This fact is reflected in the lower speech 
recognition accuracies obtained for visual speech features 
than for audio speech features in audio-visual speech 
recognition [3]. Therefore, the aim of the proposed audio-
visual VAD (AV-VAD) in this work is to exploit the 
strengths of both the audio and visual speech features by 
varying their contribution to speech/non-speech 
classification according to the SNR. At high SNRs more 
emphasis in the VAD will be given to the audio features. At 
lower SNRs the visual features will make more contribution 
as they become more discriminative than the audio features 
which are distorted by the acoustic noise.  

The range of applications that may benefit from audio-
visual VADs is increasing as the availability of cheap 
cameras becomes more widespread. Multimedia 
applications such as video conferencing, audio-visual 
speech recognition and visually-derived speech 
enhancement will be able to exploit the improved 
robustness of the proposed AV-VAD to give more accurate 
speech/non-speech classification [3][4]. 

The remainder of this paper is arranged as follows. 
Section 2 describes the audio and visual speech features 
used in the AV-VAD. The AV-VAD is explained in section 
3, first in terms of audio-only and visual-only VADs before 
being integrated into an audio-visual-VAD. Section 4 
presents experimental results that first determine the 
optimal feature and model configurations. Speech/non-
speech classification results are then presented for both 
clean and noisy speech using both speaker-dependent and 
speaker-independent AV-VADs. 

 
 

2. AUDIO AND VISUAL FEATURES 
 
Many different audio and visual speech features have been 
proposed for use in audio-visual speech processing. Mel-
frequency cepstral coefficients (MFCCs) are one of the 
most successful audio features used in speech recognition 
[5]. As such MFCCs have been selected as the audio 
feature for the AV-VAD. Suitable visual features include 
active appearance models, 2-D discrete cosine transform 
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(DCT) features and cross-DCT features. An investigation 
into visual features revealed that a good compromise 
between information content and computation is given by 
2-D DCT features which leads to their selection for the AV-
VAD [6]. The remainder of this section briefly describes 
audio and visual feature extraction. 
 
2.1 MFCC audio features 
 
MFCC features are extracted according to the ETSI Aurora 
standard [5]. Input audio is segmented into 25ms duration 
frames at 100 frames per second. Following a Hamming 
window and Fourier transform, a power spectrum is 
calculated and a 23-D mel-scale filterbank applied followed 
by a log operation. A DCT is then applied, followed by 
truncation to give a 12-D MFCC vector comprising 
coefficients zero to twelve, 

  

! 

x t = xt 1( ), xt 2( ),L , xt 12( )[ ]    (1) 

where t indicates the time index. It is also usual to augment 
the feature vector with its velocity and acceleration 
temporal derivatives, Δxt and ΔΔxt, [7] and this is 
investigated in section 4.1. 
 
2.2 Two-dimensional DCT visual features 
 
Visual features are extracted from a UxV matrix of pixel 
intensities, P, centred around the speaker’s mouth, which 
was tracked using the AVCSR tracker [8]. First a 2-D DCT 
is applied, 
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pu,v refers to the intensity of the pixel in the uth row and vth 
column of matrix P and the resulting 2-D DCT coefficients 
are given by cn,m. After the 2-D DCT, the energy from the 
image is concentrated in the lower coefficients of the 
resulting matrix. A visual vector at time t, vt, is obtained by 
extracting the 2-D DCT coefficients in a zigzag order 
located in the lower coefficient region of the matrix, 

  

! 

v t = c0,0,c0,1,c1,0,c2,0,c1,1,c0,2,c0,3,c1,2,KK[ ]      (3) 

From previous work, a suitable size of visual vector was 
found to be 14 [6]. 
 
 
3. AUDIO-VISUAL VOICE ACTIVITY DETECTION 

 
This section introduces the audio-visual VAD for 
classifying vectors as either speech or non-speech. 
Operation of the VAD is based on training two models, one 

on speech and the other on non-speech, and using these to 
classify input feature vectors. This section first discusses 
the design of audio-only and visual-only VADs which lead 
to the design of the audio-visual VAD. Audio and visual 
VADs are considered separately to allow them to be 
optimized before integration into the audio-visual VAD. 
 
3.1 Audio-only VAD 
 
The audio-only VAD (A-VAD) uses the MFCC vectors, xt, 
for classification. MFCC vectors from a set of training data, 
Z, are first pooled into two sets, one corresponding to 
speech, 

! 

"
s,x , and the other corresponding to non-speech, 

! 

"
ns,x , 

! 

"
s,x = x t # Z : ct = speech{ }  (4) 

! 

"
ns,x = x t # Z : ct = non $ speech{ }  (5) 

ct is a reference label associated with each feature vector 
and indicates whether the vector represents speech or non-
speech. 

From the two vector pools, expectation-maximisation 
(EM) clustering is used to create two Gaussian mixture 
models (GMMs), one modeling MFCC vectors from 
speech, 
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s,x , and the other modeling MFCC vectors from 

non-speech, 
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The speech GMM, 

! 

"
s,x , comprises Ks,x clusters. Each 

cluster, 

! 

"
k

s,x , is represented by a prior probability, 

! 

"
k

s,x , and 
a Gaussian probability density function, N, with mean 
vector 

! 

µ
k

s,x  and covariance matrix 

! 

"
k

s,x . The non-speech 
GMM, 

! 

"
ns,x , uses a similar set of parameters denoted by 

the superscript ns.  
Classification of an MFCC vector, xt, as being speech or 

non-speech utilizes the two GMMs to make a audio VAD 
estimate, 
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 3.2 Visual-only VAD 
 
The visual-only VAD (V-VAD) operates in a similar way 
to the audio-only VAD, except visual 2-D DCT vectors, vt, 
replace the audio MFCC vectors. Speech and non-speech 
visual vector pools are created and EM clustering is applied 
to create speech and non-speech GMMs of visual vectors, 

! 

"
s,v  and 

! 

"
ns,v , 
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Similar to equation 8, given a visual vector, vt, the two 
GMMs can be used to make a visual VAD classification 
estimate, 

! 

ˆ c t
V "VAD , as to whether the frame represents 

speech or non-speech, 

! 
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3.3 Audio-visual VAD 
 
The audio-visual VAD (AV-VAD) uses both audio and 
visual features to classify vectors as speech or non-speech. 
An audio-visual feature vector, zt, is first defined as, 

! 

zt = x t ,v t[ ]    (12) 

Vector pools comprising speech and non-speech audio-
visual vectors are created and audio-visual GMMs trained 
for speech and non-speech, 

! 

"
s,z  and 

! 

"
ns,z . Classification 

of audio-visual vectors, zt, as being speech or non-speech, 

! 

ˆ c 
t

AV "VAD , takes place as before in equations 8 and 11, but is 
now based on the audio-visual feature vector, 
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In low noise conditions it is likely that the audio component 
of the joint feature vector will be more accurate than the 
visual component in speech/non-speech classification. 
However, as noise power increases, the audio component 
will become less accurate and at some signal-to-noise ratio, 
the visual component will become more accurate. To 
exploit this variation in classification accuracy of the audio 
and visual components, the signal-to-noise ratio (SNR) is 
used to adjust the contribution made by the audio and visual 
components within the speech and non-speech GMMs for 
classification (assuming diagonal covariance matrices), 
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! 

" SNRt( )  is a nonlinear function that maps the SNR into a 
weight in the range 

! 

0 " # SNRt( ) " 1. At low SNRs, 

! 

" SNRt( )  
approaches zero which reduces the contribution of the 

audio features, while at higher SNRs the contribution of 
visual features is reduced. The function γ is determined 
experimentally using training data to find, for a particular 
SNR, the value of γ that maximises classification accuracy 
over the training data. This is discussed further in section 
4.2. The approach of varying the contribution made by 
audio and visual streams according to SNR has also been 
successfully applied to audio-visual speech recognition in 
noise [3]. 
 
 

4. EXPERIMENTAL RESULTS 
 
The aim of the experiments in this section is to examine 
speech/non-speech classification accuracy provided by the 
VADs proposed in section 3. First the accuracies of the 
audio and visual VADs are optimised in terms of the 
number of clusters in the GMMs and the features used. 
Secondly, audio-visual VAD performance is investigated at 
SNRs from clean down to -20dB and a comparison made 
against the VAD used in the ETSI Aurora standard [5]. 
Evaluations are made for training and testing on a single 
speaker and training and testing on different speakers. 

The audio-visual data used for these experiments is 
taken from the Grid database which comprises 34 male and 
female talkers, each saying 1000 three-second phrases [9]. 
Audio was originally recorded at 50kHz but has been 
downsampled to 8kHz for these experiments. The video 
was originally recorded at 25 frames per second and has 
been upsampled to 100 frames per second to give a visual 
frame rate equal to the audio frame rate. For each speaker 
800 sentences have been used for training and the 
remaining 200 used for testing. This gives a total of 60,000 
vectors for testing. 
 
4.1 Optimising features and the number of clusters 
 
This section examines the effect of increasing the number 
of GMM clusters in the audio-only and visual-only VADs 
and also examines the effect of including temporal features. 
Both the audio-only and visual-only VADs are trained and 
tested using data from s6 of the Grid database. For both the 
audio-only VAD and visual-only VAD, the number of 
clusters in the GMMs is varied from 1 to 16. Tests are also 
presented using only static features (audio or visual) and 
also with velocity, Δ, and acceleration, ΔΔ, temporal 
derivatives augmented onto the feature vector. Table 1 
shows VAD classification accuracy for both audio-only (A-
VAD) and visual-only (V-VAD) VADs in clean speech and 
at SNRs down to -20dB in white noise using from 1 to 16 
clusters, with and without temporal derivatives. Visual-only 
VAD accuracy is reported at the top of the table where the 
SNR is indicated as being not applicable (NA). 

Considering first the visual-only VAD, the results show 
that increasing the number of clusters gives a substantial 
increase in accuracy due to the improved modeling of 
visual features by the GMM. Augmenting the static visual 
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features by the temporal derivatives also increases 
performance which suggests that neighboring frames 
influence VAD accuracy.  
 

SNR Feature K=1 K=2 K=4 K=8 K=16 
NA v 92.0 92.7 93.0 94.9 95.2 
 v+Δv+ΔΔv 91.4 94.7 95.1 96.2 96.7 
Clean x 94.8 94.5 94.7 94.7 95.2 
 x+Δx+ΔΔx 97.3 97.6 97.9 98.0 98.2 
20dB x 74.5 71.7 71.7 65.9 72.0 
 x+Δx+ΔΔx 88.0 85.8 86.9 87.4 87.8 
10dB x 67.6 66.5 67.0 62.2 66.6 
 x+Δx+ΔΔx 73.4 70.2 71.6 71.2 73.1 
0dB x 57.3 57.7 56.7 54.1 56.0 
 x+Δx+ΔΔx 51.8 50.2 49.5 49.8 52.7 
-10dB x 43.9 45.8 43.1 42.8 42.3 
 x+Δx+ΔΔx 37.7 37.8 37.4 37.6 38.1 
-20dB x 40.1 41.9 39.7 40.1 39.1 
 x+Δx+ΔΔx 37.2 37.2 37.2 37.2 37.2 

Table 1 – Audio VAD and visual VAD accuracy for varying 
numbers of clusters at signal-to-noise ratios from clean to -20dB 
using static and temporal features. 

 
For the audio-only VAD, as is expected, reducing the SNR 
leads to substantial reductions in VAD accuracy due to 
more non-speech frames being incorrectly classified as 
speech. Including temporal derivatives of the audio features 
improves performance in clean speech and at SNRs down 
to 10dB, below this static-only performance is higher. 
Increasing the number of clusters in the GMMs improves 
accuracy in clean speech but leads to a slight deterioration 
in performance in noisy speech. In noisy speech, highest 
classification accuracy is given by the 1 cluster GMM.  

Based on this analysis the optimal configuration for the 
visual-only VAD is selected as the 16 cluster GMM with 
visual features comprising both static and temporal  
components. For the audio-only VAD, the 16 cluster GMM 
and audio features comprising both static and temporal 
components are selected for further experiments. Even 
though for noisy speech this configuration is not optimal, it 
is considered more important to have high accuracy in 
clean speech. As will be shown in the next section, VAD 
performance in noise benefits from the visual-only VAD. 
 
4.2 Speaker-dependent audio-visual VAD accuracy 
 
This test compares the accuracy of the audio-only, visual-
only, audio-visual and ETSI Aurora VADs in conditions 
ranging from clean speech down to noisy speech at an SNR 
of -20dB in white noise. For the audio-visual VAD, 
performance is shown for the simple equal weighting of 
audio and visual features and also using the SNR-dependent 
weighting in equations 14 and 15. Training and testing uses 
speaker s6 of the Grid database. Figure 1 shows the 
classification accuracies of the five different VADs in clean 
speech and in white noisy at SNRs from 20dB to -20dB. 

 
Figure 1 - Audio-only (AVAD), visual-only (VVAD), audio-
visual simple (AVVAD simple) and weighted (AVVAD weight) 
and ETSI Aurora VAD (ETSI) accuracies in clean and noisy 
speech for training and testing on speaker s6. 
 
As seen in the previous section, the audio-only VAD gives 
highest performance in clean speech but deteriorates 
rapidly in noise. The visual-only VAD is slightly less 
accurate in clean speech than the audio-only VAD, but is 
unaffected by the noise and so outperforms audio-only in 
noisy conditions. A simple combination of audio and visual 
features gives classification accuracy above visual-only in 
clean conditions and slightly lower in noise. However, 
adjusting the contribution of the audio and visual features 
according to the SNR gives substantially better 
performance. In clean speech and at 20dB, the AV-VAD is 
more accurate than both audio-only and visual-only VADs. 
At lower SNRs, AV-VAD accuracy converges on visual-
only VAD accuracy as the classification accuracy offered 
by the audio-VAD deteriorates. The dashed line in figure 2 
shows optimal values of the weighting function, γ, as a 
function of SNR.  

 
Figure 2 - Weighting function, γ, as a function of SNR for 
speaker-dependent and speaker-independent speech. 
 
In clean speech both the audio and visual components make 
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significant contributions to VAD classification. As noise 
increases the visual component rapidly dominates due to 
the deterioration in accuracy of the audio component.  

Tests using the ETSI Aurora VAD reveal it to be less 
accurate in clean speech than the audio-only VAD, but 
better able to maintain accuracy down to SNRs of 0dB. 
 
4.3 Speaker-independent audio-visual VAD 
 
The performance of the audio-only, visual-only and audio-
visual VADs are now analysed for speaker-independent 
training and testing. In the previous section a single speaker 
(speaker s6) was used for training and testing. In this 
section VAD testing still uses speaker s6, but VAD training 
uses data from two different speakers from the database – 
speakers s12 and s19. The aim of this test is to examine the 
sensitivity of the VADs to testing on unseen speakers. 
Figure 3 shows the performance of the five VADs in clean 
and noisy speech down to an SNR of -20dB. 

 
Figure 3 - Audio-only (AVAD), visual-only (VVAD), audio-
visual simple (AVVAD simple) and weighted (AVVAD weight) 
and ETSI Aurora (ETSI) VAD accuracies in clean and noisy 
speech for training on speakers s12 and s19 and testing on speaker 
s6. 
 
Comparing the speaker-independent results in figure 3 to 
the speaker-dependent results in figure 1 shows visual-only 
VAD accuracy to fall from 97% to 72%. For the audio-only 
VADs, the accuracy for speaker-dependent and speaker-
independent training/tests is virtually equal over both clean 
and noisy speech. This is attributed to the audio-only VAD 
operating on energy levels which are similar for training on 
speaker s6 and for training on speakers s12 and s19. For 
visual-only VADs, the modeling of the visual features for 
speech and non-speech is more complex and testing on an 
unseen speaker leads to a mismatch that reduces 
classification accuracy. The poorer performance of the 
visual-only VAD leads to worse AV-VAD performance in 
comparison to the speaker-dependent AV-VAD. This is 
further reflected by the SNR-dependent weighting function 
which is shown by the solid line in figure 2. For the 

speaker-independent VAD, more weight is given to the 
audio-VAD due to the poorer classification given by the 
visual-VAD.  
 
 

5. CONCLUSION 
 
This paper has shown that audio and visual speech 
information can be successfully combined to make a highly 
noise robust VAD. An SNR-dependent weighting term 
increases the contribution made by audio features at high 
SNRs, while reducing the contribution at lower SNRs, 
where visual features are more robust. For a system trained 
and tested on the same speaker, VAD accuracy remains 
above 97% at all SNRs. However, when testing the VAD 
on an unseen speaker, performance drops. This is primarily 
due to poor visual performance because of the mismatch 
between the visual speaker characteristics of the test and 
training speakers. However, the results presented here used 
a very small training data set of only 2 speakers. It is 
expected that increasing the range of speakers will increase 
visual VAD accuracy for unseen speakers. 
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