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ABSTRACT 
 
The aim of this paper is to investigate the effect of applying noise 
compensation methods to acoustic speech feature prediction from 
MFCC vectors, as may be required in a distributed speech 
recognition (DSR) architecture. A brief review is made of 
maximum a posteriori (MAP) prediction of acoustic features from 
MFCC vectors using both global and phoneme-specific modeling 
of speech. The application of spectral subtraction and model 
adaptation to MAP acoustic feature prediction is then introduced. 
Experimental results are presented to compare the effect of noise 
compensation on acoustic feature prediction accuracy using both 
the global and phoneme-specific systems. Results across a range 
of signal-to-noise ratios show model adaptation to be better than 
spectral subtraction and able to restore performance close to that 
achieved in matched training and testing. 
 
 

1. INTRODUCTION 
 

There has been considerable interest in using distributed speech 
recognition (DSR) for applications operating over mobile and IP 
networks. The first version of the ETSI Aurora DSR standard 
specified MFCC feature extraction on the terminal device to 
provide a stream of feature vectors to the remote back-end at a bit 
rate of 4800bps [1]. The standard was later updated to include 
transmission of voicing and fundamental frequency which 
increased the bit rate to 5600bps [2]. The primary motivation for 
transmitting this extra information was to allow audio speech to be 
reconstructed at the remote back-end. Within the Aurora standard, 
speech is reconstructed using a sinusoidal model that uses an 
MFCC-derived spectral envelope and harmonic information 
derived from the voicing and fundamental frequency. A further 
application of the fundamental frequency is to enhance speech 
recognition in tonal languages such as Mandarin and Cantonese. 

In our recent work we have examined the correlation between 
MFCC vectors and acoustic speech features (voicing, speech/non-
speech, fundamental frequency and formant frequencies) [3]. This 
led to a maximum a posteriori (MAP) method of predicting the 
acoustic features of a frame of speech from its MFCC vector 
representation. Such a scheme removed the need to transmit 
additional voicing and fundamental frequency and, by using the 
predicted voicing and fundamental frequency, allows speech to be 
reconstructed solely from the MFCC vectors [4]. 

The aim of this work is to extend previous work by improving 
acoustic speech feature prediction accuracy from MFCC vectors 
that are extracted from noisy speech. Without noise compensation, 
prediction accuracy of the acoustic features deteriorates as the 
signal-to-noise ratios (SNR) decreases. This deterioration is 
attributed to the noise distorting the MFCC vectors, which moves 

their statistics away from the distributions in the statistical model. 
To improve prediction accuracy in noise it is necessary to remove 
the mismatch between the training data derived distributions in the 
model and the input noisy MFCCs. 

Many methods have been proposed in the area of robust 
speech recognition to reduce the mismatch between clean trained 
speech models and noisy input speech features [5,6]. In this work, 
two such methods are examined. The first removes (or filters) 
noise from the input MFCCs to match them to the clean-trained 
distributions in the models. Examples of this include spectral 
subtraction, Wiener filtering, etc. The second method involves 
modifying the clean-trained distributions in the models to model 
noise contaminated speech. This has the advantage of not only 
compensating for mean shifts (as filtering does) but also 
compensating for changes in variance. Examples of this include 
model adaptation and matched condition training.  

The remainder of this paper is arranged as follows. Section 2 
gives a brief review of MAP prediction of acoustic speech features 
from MFCC vectors using both a global and a phoneme-specific 
method of speech modeling. The application of the two noise 
compensation methods to MAP prediction of acoustic features 
from noisy MFCC vectors is presented in section 3. Section 4 
presents experimental results which examine the effectiveness of 
the noise compensation methods for both the global and phoneme-
specific methods of acoustic feature prediction.  
 
 

2. ACOUSTIC FEATURE PREDICTION 
 
This section briefly describes the procedure for predicting acoustic 
speech features (voicing, fundamental frequency, formant 
frequencies, speech/non-speech) from MFCC vectors [3][4]. This 
begins by first modeling the joint density of MFCC vectors and 
acoustic speech features. Secondly, using the joint density, a 
maximum a posteriori (MAP) prediction of acoustic features can 
be made from an input MFCC vector. Two methods of modelling 
the joint density are considered. The first utilises phoneme-
specific models whereby joint densities are created for each 
phoneme. A second, more simple alternative, uses a single joint 
density for all speech sounds. 
  
2.1 Modeling phoneme-specific joint densities 
 
Three stages are involved in the phoneme-specific modelling of 
the joint density of acoustic features and MFCC vectors. First, a 
set of phoneme-based hidden Markov models (HMMs) are 
trained. Second, joint feature vectors, specific to each state of each 
HMM are pooled into voiced, unvoiced and non-speech vector 
pools. Finally, voiced, unvoiced and non-speech Gaussian mixture 
models (GMMs) are trained which model the state and model 
specific joint densities of acoustic features and MFCC vectors. 
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2.1.1 HMM training  
 
To identify each phoneme in the phoneme-specific prediction, a 
set of 44 phoneme HMMs and a silence HMM are created and 
incorporated into an unconstrained phoneme grammar. Each 
HMM has 3 states with 8 modes per state and diagonal covariance 
matrices. The static feature vector used comprises MFCCs 0 to 12 
and this augmented with velocity and acceleration derivatives [1]. 
 
2.1.2 Phoneme-specific vector pools  
 
For each state, s, of each HMM, w, vector pools, 

! 

"s,w
v , 

! 

"s,w
u  and 

! 

"s,w
ns , corresponding to voiced speech, unvoiced speech and non-

speech are created. These are created by force aligning the training 
data utterances to the correct sequence of phoneme HMMs using 
Viterbi decoding and reference annotations. For each training data 
utterance, X=[x1, x2, .., xN], comprising N MFCC vectors, this 
provides a model allocation, m=[m1, m2,  …, mN], and state 
allocation, q=[q1, q2, …, qN]. Therefore, for the tth static MFCC 
vector, xt the model allocation, mt, and state allocation, qt, together 
with the reference voicing, indicate to which vector pool the 
vector should be allocated. Reference voicing classifications are 
made by the voicing classifier in the ETSI front-end [1]. 
 Vector pools are created using all vectors in the training set. 
Each static MFCC vector is also augmented by its corresponding 
acoustic feature vector, ft, to create vector pools of joint feature 
vectors, zt, where, 

! 

zt = x t ,ft[ ]    (1) 

The acoustic vector, ft, comprises the fundamental frequency, F0, 
and first four formant frequencies, F1 to F4, i.e. 

! 

f = F0,F1,F2,F3,F4[ ] . In non-speech, both fundamental 
frequency and formant frequencies are zero. During unvoiced 
speech the fundamental frequency is zero while formant 
frequencies take non-zero values. For voiced speech, both 
fundamental frequency and formant frequencies are non-zero. 
 
2.1.3 Phoneme-specific GMMs 
 
The state and model specific vectors pools can now be used to 
create state and model specific GMMs that model the joint density 
of acoustic features and MFCC vectors. This is achieved by 
applying expectation-maximisation (EM) clustering to each vector 
pool to create voiced, 

! 

"s,w
v,z , unvoiced, 

! 

"s,w
u,z , and non-speech, 

! 

"s,w
ns,z , GMMs for each state s of each phoneme model w. For 

example, the voiced GMM is represented as, 

! 

p zt( ) ="s,w
v,z
zt( ) = #k,s,w

v
N zt ;µk,s,w

v,z
,$k,s,w

v,zz( )
k=1

K
v

%  (2) 

where Kv is the number of clusters in the voiced GMM. 

! 

µ
k,s,w

v,z , 

! 

"
k,s,w

v,zz  and 

! 

"k,s,w
v  are the  mean vector, covariance matrix and prior 

probability in the kth cluster of the voiced GMM for state s of 
model w. The means and covariances can be decomposed into 
their MFCC vector and acoustic vector components as, 

! 

µ
k,s,w

v,z
=

µ
k,s,w

v,x

µ
k,s,w
v,f

" 

# 

$ 
$ 

% 

& 

' 
' 
    and    

! 

"
k,s,w

v,z
=
"
k,s,w

v,xx "
k,s,w

v,xf

"
k,s,w
v,fx "

k,s,w
v,ff

# 

$ 

% 
% 

& 

' 

( 
( 
 (3) 

Phoneme-specific GMMs are also created for unvoiced speech and 
non-speech, 

! 

"s,w
u,z  and 

! 

"s,w
ns,z . 

 

2.2 Prediction of acoustic features 
 
The first stage in predicting acoustic features from a stream of 
MFCC vectors is to determine their state and phoneme model 
sequence using Viterbi decoding. Secondly, for each MFCC 
vector, a state and model specific voicing classification is made. 
Finally, for MFCC vectors classified as voiced, formant and 
fundamental frequencies are predicted, while for unvoiced MFCC 
vectors only formant frequencies are predicted. 
 
2.2.1 Voicing prediction 
 
From an input stream of MFCC vectors, X=[x1, x2, .., xN], Viterbi 
decoding is used to determine their state and model sequence, 
q=[q1, q2, …, qN] and m=[m1, m2,  …, mN]. The probability of 
each MFCC vector from the voiced, unvoiced and non-speech 
GMMs is then computed and used to make a voicing prediction,  

! 

voicingt =

voiced "
qt ,mt

v,x
x t( ) #"qt ,mt

u,x
x t( ) and "

qt ,mt

v,x
x t( ) #"qt ,mt

ns,x
x t( )

unvoiced "
qt ,mt

u,x
x t( ) #"qt ,mt

v,x
x t( ) and "

qt ,mt

u,x
x t( ) #"qt ,mt

ns,x
x t( )

non $ speech otherwise

% 

& 

' 
' 

( 

' 
' 

    

(4) 

! 

"
qt ,mt

v,x , 

! 

"
qt ,mt

u,x  and 

! 

"
qt ,mt

ns,x  represent the voiced, unvoiced and 

non-speech GMMs associated with state qt and model mt which 
have been marginalised to the MFCC vector component, x.  
 
2.2.2 Acoustic feature prediction 
 
For MFCC vectors classified as voiced, fundamental and formant 
frequencies are predicted. Using the state and model allocation for 
MFCC vector xt, a MAP prediction of the acoustic feature vector, 

! 

ˆ 
f t k( ) , can be made from cluster k of the voiced GMM to which 

MFCC vector xt is allocated, 

! 

"
k,qt ,mt

v,z , as, 

! 

ˆ 
f t k( ) = argmax

f t

p ft x t ,"k,qt ,mt
v,z# 

$ 
% 

& 
' 
( 

# 

$ 
% 

& 

' 
(   (5) 

The posterior probability, 

! 

hk,qt ,mt x t( ) , of the MFCC vector 
belonging to the kth cluster of the GMM can be used to make a 
weighted MAP prediction from all Kv clusters, 

! 

ˆ 
f t = hk,qt ,mt x t( ) µ

k,qt ,mt

v,f +"
k,qt ,mt

v,fx "
k,qt ,mt

v,xx( )
#1

x t # µ
k,qt ,mt

v,x( )
$ 

% 
& 

' 

( 
) 

k=1

K
v

*    (6) 

where the posterior probability is computed as, 

! 

hk,qt ,mt x t( ) =

"k,qt ,mt
v p x t #k,qt ,mt

v,x$ 
% 
& 

' 
( 
) 

"k,qt ,mt
v p x t #k,qt ,mt

v,x$ 
% 
& 

' 
( 
) 

k=1

K
v

*

     (7) 

! 

p x t "k,qt ,mt
v,x# 

$ 
% 

& 
' 
(  is the marginal distribution of the MFCC vector 

for the kth cluster in the voiced GMM. 
 For MFCC vectors classified as unvoiced, a similar procedure 
is followed using the unvoiced GMMs to predict only formants. 
 
2.3 Global prediction of acoustic features 

A more simple approach to predicting acoustic speech features 
from MFCC vectors is to use just one voiced, unvoiced and non-
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speech GMM which together model the joint density of MFCC 
vectors and acoustic features across all speech sounds. In effect 
this is a specific implementation of the phoneme-specific 
prediction, where just a single state HMM is used. This avoids 
having to decode the MFCC vectors into a state and model 
sequence as all acoustic features will be predicted from the same 
global state comprising voiced, unvoiced and non-speech GMMs. 
This simple alternative provides a useful comparison to the more 
sophisticated phoneme-specific methods and is evaluated in the 
experimental results. 
 
 

3. NOISE COMPENSATION 
 
Previous work has shown that acoustic feature prediction errors 
increase when noise contaminates the speech [3]. This is attributed 
to the noise distorting the MFCC vectors which leads to a 
mismatch with the joint densities trained on clean speech. In this 
work two noise compensation methods are applied to acoustic 
speech feature prediction to reduce this mismatch between clean 
trained models and noisy input MFCC vectors. The first method 
examined is spectral subtraction [5]. The second method adapts 
the statistics of the joint densities to model noisy speech. Such 
adaptation methods have been successfully applied to speech 
recognition systems to improve noise robustness [6]. The 
remainder of this section describes the application of spectral 
subtraction and model adaptation to acoustic feature prediction. 
 
3.1 Spectral subtraction 
 
To apply spectral subtraction, the MFCC vectors received at the 
DSR back-end must be returned to the linear spectral domain 
where speech and noise are additive. The MFCC vectors are first 
zero padded to the dimensionality, J, of the log filterbank and an 
inverse discrete cosine transform (DCT) applied to obtain a log 
filterbank vector, 

! 

x t
lfb , 

! 

x t
lfb

=C
"1
x t    (8) 

Matrix C contain the basis vectors of the DCT, where each 
element cij is given as, 

! 

cij = cos
i" j + 0.5( )

J

# 

$ 
% 

& 

' 
( 0 ) i, j ) J *1  (9) 

Applying an exponential gives linear filterbank vectors, 

! 

x t
fb , 

! 

x t
fb

= exp x t
lfb( )    (10) 

In this application it is unnecessary to return the filterbank vector 
to a magnitude or power spectrum for subtraction. In fact the 
wider bandwidths of filterbank channels, over those of the spectral 
bins, gives more stability and reduces the chance of processing 
distortion as a result of over subtraction. Of the many variants of 
spectral subtraction, this work uses linear subtraction with an 
over-subtraction factor, α. Spectral distortion is reduced by a 
maximum attenuation threshold, β, rather than a noise floor. The 
clean speech filterbank estimate, 

! 

ˆ s t
fb

i( ), for the ith channel of the 
tth frame is given as, 

! 

ˆ s t
fb

i( ) =
xt

fb
i( )"# ˆ d 

fb
i( ) xt

fb
i( )"# ˆ d 

fb
i( ) > $ xt

fb
i( )

$ xt
fb

i( ) otherwise

% 

& 
' 

( ' 
 (11) 

where 

! 

ˆ d 
fb

i( )  is the noise estimate in the ith filterbank channel. 
This is estimated in speech inactive periods and computed from 
received MFCC vectors using an inverse DCT and exponential 
operation. The clean speech filterbank estimate, 

! 

ˆ s 
fb , is 

transformed back to the MFCC domain using log, DCT and 
truncation operations. The resulting noise-reduced MFCC vector 
is then input into the acoustic feature prediction system. 
 
3.2 Model adaptation 
 
The second noise compensation method adapts the statistics of 
each of the phoneme-specific voiced, unvoiced and non-speech 
GMMs to model noise contaminated MFCC vectors. Considering 
equation 3, the MFCC mean vectors and covariances, 

! 

µ
k

v,x  and 

! 

"
k

v,xx , need to be adapted to the noise. Note, for clarity, the state 
and model indices, qt and mt, have been dropped from the 
notation. The acoustic feature means and covariances, 

! 

µ
k

v,f  and 

! 

"
k

v,ff , are independent of the noise and left unchanged. Similarly, 

the covariances of MFCCs and acoustic features, 

! 

"
k

v,xf  and 

! 

"
k

v,fx , 
can be left unchanged as the noise is uncorrelated with the 
acoustic features. 

The MFCC means and covariances must be adapted so that 
instead of modeling clean speech they model noisy speech. To 
allow adaptation, the MFCC-domain means and covariances must 
be inverted to the linear filterbank domain where speech and noise 
are additive. First, the MFCC-domain means and covariances are 
zero padded and inverse DCTs applied to obtain log filterbank 
domain means and covariances, 

! 

µk
v,x,lfb  and 

! 

"k
v,xx,lfb , 

! 

µk
v,x,lfb

=C
"1µk

v,x  

! 

"k
v,xx,lfb

=C#1"k
v,xx

C
#1( )

T
 (12) 

It is assumed that MFCC vectors exhibit a Gaussian distribution 
which is also true in the log filterbank domain. However, in the 
linear filterbank domain the vectors are log normal. The log 
filterbank means and covariances can be transformed into the 
linear filerbank domain, 

! 

µk
v,x, fb  and 

! 

"k
v,xx, fb , [6], as, 

! 

µk
v,xx, fb

i( ) = exp µk
v,xx,lfb

i( ) +
diag "k

v,xx,lfb
i,i( )( )

2

# 

$ 
% 

& 
% 

' 

( 
% 

) 
% 

      (13) 

! 

"k
v,xx, fb

i, j( ) = µk
v,x, fb

i( ) µk
v,x, fb

j( )exp "k
v,xx,lfb

i, j( )#1{ }   (14) 

The linear filterbank means and covariances of noisy speech, 

! 

µk
v,y, fb  and 

! 

"k
v,yy, fb , are computed by adding the clean speech 

means and covariances to the noise mean and covariance, 

! 

µ d, fb  
and 

! 

"
dd, fb , 

! 

µk
v,y, fb

= µk
v,x, fb

+ µ
d, fb   

! 

"k
v,yy, fb

= "k
v,xx, fb

+"
dd, fb  (15) 

The noise mean and covariance are provided by a single cluster 
GMM that has been trained from non-speech periods. 
 The noisy filterbank means and covariances can be 
transformed into the MFCC domain using the inverse of equations 
13 and 14. Finally, the noisy log filterbank means and covariances 
are transformed to the MFCC domain, 

! 

µ
k

v,y  and 

! 

"
k

v,yy , 

! 

µk
v,y

=Cµk
v,y,lfb  

! 

"k
v,yy

=C"k
v,yy,lfb

C
T

 (16) 

These noisy MFCC means and covariances replace the clean 
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speech means and covariances, 

! 

µ
k

v,x  and  

! 

"
k

v,xx , in equation 3. 
Similar adaptations are made for the means and covariances in the 
unvoiced and non-speech GMMs. 
 
 

4. EXPERIMENTAL RESULTS 
 
These experiments investigate the effectiveness of the noise 
compensation methods when applied to acoustic feature prediction 
from MFCC vectors in noise. Their effectiveness is examined for 
both the global (GMM) and phoneme-specific (HMM-GMM) 
based methods of acoustic feature prediction.   
 The experiments use a speaker-dependent speech database 
recorded from a single female US English speaker. This comprises 
589 sentences for training and further 246 sentences for testing. 
This provides a test set of approximately 130,000 vectors. 
Reference fundamental frequency and voicing is obtained from a 
laryngograph. Speech/non-speech classification is derived from 
hand corrected phoneme annotations. Formant frequencies were 
obtained from a combined linear predictive-Kalman filtering 
approach [7]. The speech was sampled at 8kHz and 13-D MFCC 
vectors extracted from 25ms frames at a rate of 100 vectors per 
second in accordance with the ETSI Aurora standard [1].  
 The first set of experiments examine the effectiveness of noise 
compensation on voicing classification and fundamental frequency 
prediction. This is followed by a second set of experiments which 
apply noise compensation to speech/non-speech classification and 
formant frequency prediction.  
 
4.1 Voicing and fundamental frequency prediction 
 
This section examines the effectiveness of the noise compensation 
methods on voicing and fundamental frequency prediction using 
both global and phoneme-specific prediction. Before presenting 
experimental results, the measures used to evaluate voicing and 
fundamental frequency prediction errors must be defined. The 
accuracy of identifying voiced frames is measured using the 
percentage voicing classification error, Evc, defined as, 

! 

Evc =
N
v nv

+N
nv v

NT

"100%           (17) 

Nv|nv is the number of unvoiced or non-speech vectors that are 
incorrectly classified as voiced, Nnv|v is the number of voiced 
vectors that are incorrectly classified and NT is the total number of 
vectors in the test set. Fundamental frequency prediction is 
measured using the percentage fundamental frequency error, Ep, 

! 

E p =
1

NV

ˆ F 0t "F0t

F0tt=1

NV

# $100%         (18) 

! 

ˆ 
F 0t

 and 

! 

F0t  are the predicted and reference fundamental 
frequency of the tth frame. Ep is measured for all Nv frames 
labelled as voiced according to the reference voicing. This ensures 
voicing classification errors do not influence Ep . 
 Table 1 shows voicing classification error, Evc, and 
fundamental frequency error, Ep, obtained using the global 
(GMM) system. The table shows prediction accuracies in clean 
speech and at SNRs of 20dB, 10dB and 0dB in white noise. The 
columns of the table show results for no noise compensation 
(NNC), spectral subtraction (SS) and model adaptation. These are 
all based on clean speech trained GMMs. To indicate likely best 
performance in noise, the final column (Match) shows 
performance when the GMMs are trained and tested in the same 
matched noise conditions. In practice matched condition training 
and testing is not feasible but it does provide a guide to best 

performance. Table 2 presents a similar set of voicing and 
fundamental frequency prediction errors but these are produced 
using the phoneme-specific (HMM-GMM) system. 
 

Error  Noise NNC SS Adapt Match 
Evc Clean 5.50 5.50 5.50 5.50 
 20dB 6.06 6.83 5.28 5.33 
 10dB 10.88 8.02 7.14 6.43 
 0dB 41.45 14.92 16.17 11.10 
Ep Clean 5.26 5.26 5.26 5.26 
 20dB 9.49 9.01 6.91 5.80 
 10dB 13.95 12.93 9.17 7.71 
 0dB 22.13 19.04 14.46 11.34 

Table 1 - Voicing and fundamental frequency prediction errors on 
clean and noisy speech for no noise compensation (NNC), spectral 
subtraction (SS), model adaptation and matched training/testing 
using global speech modeling. 
 

Error  Noise NNC SS Adapt Match 
Evc Clean 5.95 5.95 5.95 5.95 
 20dB 6.28 5.55 5.58 5.43 
 10dB 12.39 6.92 7.25 5.87 
 0dB 34.41 31.23 8.35 7.93 
Ep Clean 5.58 5.58 5.58 5.58 
 20dB 9.78 8.36 6.68 6.23 
 10dB 13.57 13.18 9.99 8.06 
 0dB 16.32 16.90 14.23 11.81 

Table 2 - Voicing and fundamental frequency prediction errors on 
clean and noisy speech for no noise compensation (NNC), spectral 
subtraction (SS), model adaptation and matched training/testing 
using phoneme-specific speech modeling. 
 
The results show that as SNR reduces, the accuracy of voicing and 
fundamental frequency prediction deteriorates for both the global 
and phoneme-specific systems as indicated by the NNC columns 
in tables 1 and 2. Spectral subtraction gives significant reductions 
in prediction errors, in particular for voicing classification. In 
general, model adaptation further reduces prediction errors over 
those achieved by spectral subtraction. In fact, at higher SNRs the 
errors rates of model adaptation approach those of matched 
training/testing which can be considered the optimal adaptation. 
 For the phoneme-specific system, the noisy MFCC vectors 
contribute to prediction errors in two ways. Directly, by their 
distorted values affecting the MAP prediction, and indirectly, by 
reducing Viterbi decoding accuracy which corrupts the model and 
state sequence used in phoneme-specific prediction. The second of 
these effects can be investigated by comparing prediction errors 
when the sequence of phonemes is generated using the 
unconstrained phoneme decoding to when it is forced to the 
correct phoneme sequence. Table 3 shows voicing and 
fundamental frequency prediction errors on clean and noisy 
speech, using unconstrained decoding and forced alignment. The 
last rows of the table indicate the phoneme accuracy. 
 
Test Grammar Clean 20dB 10dB 0dB 
Evc Unconstrained 5.95 6.28 12.39 34.41 
 Forced 6.03 7.59 10.12 13.13 
Ep Unconstrained 5.58 9.78 13.57 16.32 
 Forced 5.62 8.98 13.61 19.08 
%Acc Unconstrained 73.7 33.9 15.3 11.3 
 Forced 100.0 100.0 100.0 100.0 

Table 3 – Voicing and fundamental frequency prediction errors 
with no noise compensation for clean and noisy speech using 
unconstrained and forced phoneme grammars. 
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The results show that even when the correct phoneme sequence is 
given (by the forced grammar), voicing and fundamental 
frequency errors increase considerably as SNR reduces. Moving to 
unconstrained phoneme decoding gives a large increase in voicing 
classification errors, particularly at 0dB. For fundamental 
frequency prediction, the effect of unconstrained decoding is 
much less, and at 0dB gives lower errors than forced decoding. 
 
4.2 Speech classification and formant prediction 
 
This section examines the effectiveness of the noise compensation 
methods on speech/non-speech prediction and formant frequency 
prediction using both the global and phoneme-specific systems. 
Classification of vectors as speech or non-speech is measured by 
the percentage speech activity classification error, Esc, 

! 

Esc =
N
s ns

+N
ns s

NT

"100%   (19) 

Ns|ns is the number of non-speech vectors that are incorrectly 
classified as speech, Nns|s is the number of speech vectors that are 
incorrectly classified as non-speech. Formant frequency prediction 
errors are averaged across all four formants to give the percentage 
formant frequency error, Ef,  

! 

E f =
1

4 "NV q=1

4

#
ˆ F q( )

t
$F q( )

t

F q( )
tt=1

NS

# "100%  (20) 

where 

! 

ˆ F q( )
t
 and 

! 

F q( )
t
 are the predicted and reference frequency 

of the qth formant for the tth frame. Similar to Ep, formant 
frequency errors are measured for all Ns reference frames labelled 
as speech to ensure classification errors do not influence Ef. 
  

Error  Noise NNC SS Adapt Match 
Esc Clean 3.58 3.58 3.58 3.58 
 20dB 18.16 18.16 17.90 11.80 
 10dB 18.84 18.11 23.21 16.43 
 0dB 18.10 18.13 18.31 22.51 
Ef Clean 10.00 10.00 10.00 10.00 
 20dB 21.74 20.27 18.41 14.24 
 10dB 25.07 24.22 20.68 16.47 
 0dB 26.11 31.78 25.52 20.74 

Table 4 - Speech/non-speech and formant frequency prediction 
errors on clean and noisy speech for no noise compensation 
(NNC), spectral subtraction (SS), model adaptation and matched 
training/testing using global speech modeling. 
 

Error  Noise NNC SS Adapt Match 
Esc Clean 1.90 1.90 1.90 1.90 
 20dB 10.67 14.49 3.93 3.33 
 10dB 17.31 14.48 3.58 3.47 
 0dB 17.29 17.30 4.54 4.55 
Ef Clean 10.30 10.30 10.30 10.30 
 20dB 23.28 20.28 15.92 13.60 
 10dB 30.22 25.95 16.81 15.89 
 0dB 42.35 41.91 26.29 20.45 

Table 5 - Speech/non-speech and formant frequency prediction 
errors on clean and noisy speech for no noise compensation 
(NNC), spectral subtraction (SS), model adaptation and matched 
training/testing using phoneme-specific speech modeling.  
 
Table 4 shows speech/non-speech classification error, Evc, and 
formant frequency error, Ep, obtained using the global (GMM) 
system. As in tables 1 and 2, errors are shown in clean and noisy 

speech at SNRs from 20dB to 0dB in white noise. Results are 
again shown for no noise compensation, spectral subtraction, 
model adaptation and matched training/testing. Table 5 presents 
similar speech/non-speech and formant frequency prediction 
errors but uses the phoneme-specific (HMM-GMM) system. 
 For speech/non-speech classification, phoneme-specific 
prediction consistently outperforms global prediction. The most 
significant differences are for model adaptation and matched 
conditions at low SNRs, where the phoneme-specific system 
hardly deteriorates from the no noise performance. This is 
attributed to both model adaptation and matched conditions 
maintaining higher phoneme accuracies as SNR falls. For 
example, in clean speech, phoneme accuracy is 74%. With no 
noise compensation this falls to 14% at 10dB, but with matched 
conditions is increased to 50%.  
 For formant frequency prediction, the phoneme-specific 
system is generally more accurate than global prediction, 
particularly at lower SNRs. The results also show model 
adaptation to be more effective at noise compensation than 
spectral subtraction, and approaching matched condition 
performance. This is consistent with prediction of the acoustic 
features in the previous section. 
 
 

5. CONCLUSION 
 
This work has shown that noise compensation can be successfully 
applied to both phoneme-specific and global MAP prediction of 
acoustic features from MFCC vectors. Adapting the clean speech 
models to model noisy speech performs better than removing the 
noise using spectral subtraction. It is interesting to observe that the 
model adaptation method of noise compensation, which has been 
shown to be more effective than filtering, cannot be implemented 
in traditional fundamental frequency and formant frequency 
estimation methods [7,8]. However, the statistical modeling 
approach used here is able to benefit from adaptation.  
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