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ABSTRACT

In this paper we discuss new adaptive proposal strategies for
sequential Monte Carlo algorithms—also known as particle
filters—relying on new criteria evaluating the quality of the
proposed particles. The choice of the proposal distribution is a
major concern and can dramatically influence the quality of the
estimates. Thus, we show how the long-used coefficient of variation
(suggested by [10]) of the weights can be used for estimating the
chi-square distance between the target and instrumental distribu-
tions of the auxiliary particle filter. As a by-product of this analysis
we obtain an auxiliary adjustment multiplier weight type for which
this chi-square distance is minimal. Moreover, we establish an
empirical estimate of linear complexity of the Kullback-Leibler
divergence between the involved distributions. Guided by these
results, we discuss adaptive designing of the particle filter proposal
distribution and illustrate the methods on a numerical example.

1. INTRODUCTION

Easing the role of the user by tuning automatically the key parame-
ters of sequential Monte Carlo (SMC) algorithms has been a long-
standing topic in the community. In this paper we develop methods
for adjusting adaptively the importance sampling distribution of the
particle filter.

Several authors have focused on adaptation of the size of the
particle sample, e.g., by increasing the number of particles until the
total weight mass reaches a positive threshold, see [12], or until the
Kullback-Leibler divergence (KLD) between the true and estimated
target distributions is below a given threshold, see [7].

Unarguably, setting an appropriate sample size is a key ingre-
dient of any statistical estimation procedure. However, increasing
the sample size only is far from being always sufficient for achiev-
ing efficient variance reduction; indeed, as in any algorithm based
on importance sampling, a significant discrepancy between the pro-
posal and target distributions may imply the need of an unreason-
ably large number of samples for decreasing the variance of the
estimate under a specified value.

This points to the need for adapting the importance distributions
of the particle filter, e.g., by adjusting the proposal kernels. Less
work has been done on this topic, with the notable exception of
[14], in which the so-called optimal kernel is approximated, and
[2], in which the expectation of a cost function, such as the mean
square error or the negated effective sample size, is minimised over
a parametric family of kernels.

Most of the algorithms described above require tools, such as
the coefficient of variation (CV) proposed by [10], for evaluating
on-line the quality of the particle swarm. In this article we justify
theoretically that the CV can be used for estimating sequentially the
asymptotic chi-square distance (CSD) between the auxiliary SMC
target and importance distributions. Moreover, a new empirical es-
timate of the asymptotic KLLD having a computational complexity
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which is linear in the number of particles is proposed. We also iden-
tify a type of auxiliary SMC adjustment multiplier weights which
minimize these asymptotic discrepancy measures for a given pro-
posal kernel. Finally, we use the empirical CSD and KLD estimates
for designing adaptively the auxiliary particle filter importance dis-
tributions and apply the proposed algorithms to optimal filtering in
state space models.

Complete proofs of the theoretical results as well as more de-
tailed explanations and additional simulations are given in [3].

2. THE AUXILIARY PARTICLE FILTER
Let v be a probability measure on some general state space
(B,4(E)) and let {(éi,wN_[)}?i"’l be a set of particles on
with associated weights such that Q' ):fi”l oy if (&), with Qy

):fi”l @y,i, approximates expectations fE f(&)v(dé) for all f in
some specified class of functions. We wish to transform this sample
into a new weighted particle sample approximating the probability

measure
o JeL(E)v(dE)

JeL(E, E)v(dE)

on some other state space (Z,%(&)) where L is a finite transition

kernel from (2, %(E)) to (£, %(%)). A natural strategy for achiev-
ing this is to replace v in (1) by its particle approximation, yielding

Af th élvh’)

j 1wNj (‘Sj:i)

> m

p(-) )

[L(&) /L&, E)]

as an approximation of g1, and simulate My new particles from this
distribution; however, in many applications direct simulation from
Uy is infeasible without the application of expensive accept-reject
techniques; see [9] and [11]. This difficulty can be overcome by

simulating new particles {§N,} N from the instrumental mixture
distribution

My
Z ON i YN, i (€i7.)7

1“’N,J‘I’NJ

where {WNﬁi}?iNl are positive numbers referred to as adjustment
multiplier weights and R is a markovian kernel, and associating

these particles with weights {dpy /an(éN ,)} . In this setting,
a new particle position is simulated from the straturn R(&;,-) with
probability proportional to @y ;yy ;. Unfortunately, the Radon-
Nikodym derivative duy/dmy is expensive to evaluate since this
involves summing over My terms. Thus, we introduce, as suggested
by [14], an auxiliary variable corresponding to the selected stratum,
and target instead the measure

dLlX A 2 ON i (éivi)~ L(&,A)/L hi
({i} xA) —Z Cow L (5173)[ (&.,A)/L(&,2)]
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on the product space {1,...,My} X E. Since py is the marginal
distribution of ui'™ with respect to the particle position, we may

sample from iy by simulating instead a set { (I, EN,,-) f‘i"’l of in-
dices and particle positions from the instrumental distribution
ON i YN i
M,
Lt On YN,

™ ({i} xA) = R(Gi,A)

and then associating each draw (Iy ;, %EN ;) with the weight @y; =
dL(é[N_’., ')/dR(éIN,U ) (éN,i) aux/dng]ux (IN i éN l) Here-

after, we discard the indices and take {(éNﬁi, Oy ;) fi
imation of u. The algorithm is summarized below.

1
YN,
SN
| as an approx-

Algorithm 1 Auxiliary particle filter (APF)

Require: {(&;, oy 1)}
1: Draw {Iy;}¥ N///(MN7{(1’N,,/“I’N,J‘/):2/I=N1 wN;fWNvl}ZJ"/IZNI)

. simulate {éN,}MN ~ ®MN R(&pyir)s

3 set @y, & Wi i ALy ) /AR (Epy ) (i)

: take {(éN,i,wN,i)

| targets V.

N

N

My
' as an approximation of 4.

Note that setting, for all 1 <i < My, yy; =1 in Algorithm 1
yields the standard bootstrap particle filter presented in [8]. Note
also that using the so-called optimal adjustment weights Yy ; =
P (&) 2 L(&,Z) and the optimal kernel R(E,") = R*(€,-) =

L(&,)/L(&,E) for every & leads to direct simulation from pi**.
However as stated earlier these quantities are rarely available.

We may expect that the efficiency of Algorithm 1 depends
highly on the choice of adjustment multiplier weights and proposal
kernel. The former issue was treated by [S] who identified adjust-
ment multiplier weights for which the increase of asymptotic vari-
ance at a single iteration of the algorithm is minimal. In this article
we focus on the latter issue and discuss strategies for adaptive de-
signing of the proposal kernel. Unlike [5], we base our methods on
the results of the next section describing the asymptotic KLD and
CSD between the target and importance distributions of the auxil-
iary SMC algorithm.

3. THEORETICAL RESULTS

From [4] we adopt the following definition.

Definition 3.1 A weighted sample {(éth.i)}?iN] on B is said to
be consistent for the probability measure U and the set C if, for

any € C, as N — oo, O YM ay £(&) 2 [ £(E) w(dE) and

—1 P
Q' maxj<j<p, Oy; — 0.

‘We impose the following assumptions.

(A1) The initial sample {(&;, @y ;) ?i”l is consistent for (v,C).

(A2) There exists a function P : £ — RT such that yy; = ¥(&);
moreover, ¥ € CNL'(Z,v) and L(-,£) € C.
Under these assumptions we define the weight function

®(§,8) =W 1(E)AL(E,)/dR(E,)(&), (&.€) € Ex E. From [5,
Theorem 3.1] we obtain the following result, which describes how
the consistency property is preserved through the auxiliary impor-
tance sampling operation.

Proposition 3.1 Assume (A1, A2). Then { (EN,,,‘7 (I)NJ)}?zNI is con-
sistent for (v, {f € L'(E,u), [z | f(E)|L(-,dé) € C}).
Let pu and v be two probability measures on the same mea-

surable space (A, %(A)) such that p is absolutely continuous with
respect to v. We then recall that the KLD and the CSD are

given by dic (][v) 2 Jy logdu/dv(A)] (dR) and dyp (V) 2
Jaldu/dv(A) —1]? v(dA), respectively. We will use the following
quantities to compute empirical estimates of the KLD and CSD be-
tween py™ and 7y, Indeed, define

E({an ) & 1ZwN,1og (MNQ wN,),

i=1

~ ~ MN
2MNOY oy -1,

i=1

v ({an 1)

where CV? is the square of the CV suggested by [10] as a means
for detecting weight degeneracy; we then have the following result,
which is the main result of this section and whose proof is available
in [3].

Theorem 3.1 Assume (A1, A2). Then the following holds.
i) IfL(-,|log®|) € CNLY(Z, V), then
auX| ‘ auX)

‘dKL 5({@N,i}£ﬂ))10, as N — oo,

ii) If L(-,®) € C, then

[ (3 730) = V2 ({@wa} )

, asN — oo,

Moreover, define the two probability measures p*(A)
I V(AE) L(E, € TA(E. &)/ [T VAE) L(E,dE/) and  m(4)
JIV(AE)F(S)R(S,dENTA(S,E")/ [[ v(dE)F(E)R(E,dE") o
the product space (E x &, Z(E) ® #(%)). As shown in the next
corollary, the asymptotic KLD and CSD between the instrumental
and target distributions of the particle filter can be characterised
as the KLD and CSD between these distributions. In addition, it
provides the adjustment multiplier weight function minimising, for
a given proposal kernel R, the asymptotic KLD and CSD. Again,
the proof is presented in [3].

1> 1>

=

Corollary 3.1 Let the assumptions of Theorem 3.1 hold true. Then,
as N — oo,

P * *
di (U™ ™) — Mk (P) £ dg (1] )

and

dp (™[ m3) 15 np (B) &

dy> (1" ) -
(é,i) and arg ming 7,2 (¥) =
[/ dL/dR(&,E)L(§,d)]"/2.

Letting R(-,A) =L(-,A
square optimal adjustment multiplier weight function ‘P;‘(z R

In addition, arg ming Nk (V) =
‘P;CZVR’ where ‘P;{R(é)
)/L(-,Z) yields, as we may expect, a chi-
('7 E‘) =
L(-,%), which coincides with the Kullback-Leibler optimal one. In
this case the importance weights are uniform, i.e. @y ; = 1.

4. ADAPTIVE IMPORTANCE SAMPLING
4.1 Adaptation by minimisation of estimated KLD and CSD

In the light of Theorem 3.1, a natural strategy for adaptive design of
7y is to minimize the empirical estimate & (or CV?) of the KLD
(or CSD) under consideration over all proposal kernels belonging
to some parametric family {Rg } gc@. Thus, assume that there exists
a random noise variable €, having distribution A on some measur-
able space (A, Z(A)), and a family {Fp}gce of mappings from
Z x A to & such that we are able to simulate & ~ Rg(€,-), for
& € E, by simulating € ~ A and letting & = Fy(&,€). We denote
by ®g the importance weight function associated with Rg and set

¢)90F9(578) écbe(é,Fg(g,S)).
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In this setting, assume that (A1) holds and suppose that we have
simulated, as in the first step of Algorithm 1, indices {IN,i}?i’Vl and

noise variables {EN-,i}?iNl ~ 22Mx Now, keeping these indices and
noise variables fixed, we can form an idea of how the KLD varies
with @ by studying the function 8 — &({®g o Fg (&, en.0) 1)

Similarly, the CSD can be studied by using CV? instead of &. This
suggests an algorithm in which, as soon as the empirical KLD as-

sociated with the updated particle weights {G)N,,'}?i’vl exceeds some
given threshold «, the particles are reproposed using Ry, , where

0, = arg mingcg & ({Pp o F9(§1N_,,8N75)}?i1"1). The minimum 6,
exists if, e.g., the parameter space ® is compact and the mapping
0 — g o Fy(&,¢€) is continuous for all (§,¢€), or when O is fi-
nite. The algorithm is summarized below, where we assume that
the particles evolve according to Rg,, 6y € ©, when the adaptation
operation is put on standby.

Algorithm 2 Adaptive APF
Require: (A1)

1: Draw {Iy;}}" & |~ (My, {0y, jyn,j/ T 1(DNHI’N(/}] s
MN NA’@MN

: simulate {&y;};Y
- if g({q)go OFgo (éINﬁSN,l)}izl) > K then

0, < arg mineee)g({q)ﬂ OFG(€’N.;’£N.i)}?il\]1)’
else

0, — 6y,
end if

Sl o .
: set &y < F, (&y;-€n.i) and @ ; D (&g Enii),

: let {(éN,,a)N,)}l | approximate 1.

4.2 APF adaptation by Cross-Entropy methods

Here again our aim is choose, from a parametric family, a proposal
kernel which minimises the KLD between the target distribution
uy'™ and the instrumental mixture distribution of the APF. Given
an initial sample {(&y;, &)Nﬁi)}?i'vl approximating v, we use impor-

tance sampling from an instrumental auxiliary distribution n,;‘,“é to

approximate the target auxiliary distribution u{'™*; here ﬂ[’i‘,u’é is the
straightforward modification of 7y'* obtained by replacing R by Ry,
Rg being a Markovian kernel from (2, %(Z)) to (£, (%)) belong-
ing to the parametric family {Ry(&,-): & € E,0 € O}.

We aim at finding the parameter 6* which realizes the minimum
of 6 — dxi.(uy"™||my'y) over the parameter space ©, where

aux
die (™| 735) = / log ( d‘;ﬁlx 5)) B 4E) . @)
In most cases, the expectation on the RHS of (2) is intractable. The
main idea of the cross-entropy (CE) method (see [15]) is to approx-
imate iteratively this expectation. Each iteration of the algorithm is
split into two steps.
Atiteration ¢, denote by 916 € O the current fit of the parameter.

We then sample My, particles {(If,vi,f]{,’i)} from 77:;\‘/“26, following

Algorithm 1 with My = Mf, and R = Re,‘; . Note that the adjust-
ment multiplier weights are kept constant during the iterations, but
this limitation may easily be removed. The second step consists in
minimizing exactly the approximation

M 4’ aux
9Hl £ argmin —-log dity (15,9 ) 3)
6co Zl &), %\ g eV

of (2). In the case where the kernels L and Rg, 6 € ®, have densities,
denoted / and rg, respectively, with respect to a common reference

measure on (£, %(Z)), the minimization program (3) is equivalent
to the following:

y,
(D
9[{7'*‘1 Aargnlaxz = 10gr6(€1‘ véNl)' “)
00 =] QN

This algorithm is only helpful in situations where the minimiza-
tion problem (3) is sufficiently simple to allow for maximization on
closed form; this happens for example if the objective function is a
convex combination of concave functions, whose minimum either
admits a (simple) closed form expression or is straightforward to
minimize numerically. This is in general the case when the function
rg(&,-) belongs to an exponential family for any & € =.

Since this optimization problem resembles the Monte Carlo
EM algorithm, all details concerning implementation of these al-
gorithms can be readily transposed to that context; see e.g. [13].
As seen in Section 5, convergence occurs, since we concider very
simple models, within few iterations. The successive number of
partlcles {MN} ~ is also to be chosen, as a trade-off between pre-
cision of the approximation of (2) by (3) and computational cost.
Numerical evidence typically shows that this number can be rela-
tively small compared to the final size My, as precision is less cru-

cial than when generating the final population from ﬂ;‘/“gL Besides,

it is possible (and even theoretically recommended) to increase the
number of particles with the iterations, as, heuristically, high accu-
racy is less required in the first steps. In the current implementation
in Section 5, we will show that fixing a priori the total number of
iterations and using the same number of particles at each iteration

M}; = My /L can provide satisfactory results in a first run.

Algorithm 3 CE-based adaptive APF
Require: (A1)

1: Choose an arbitrary 9](\),,

2: for{=0,...,.L—1do

M? ~
3: draw {If,,} N ///(va,{wNjWNj/ ):1,‘21 wN,n‘lfN,n}[j\‘/[:Nl)
4: simulate {:’,’N,}MN ®, 1R9f(§1f ),

5: update @y ; g ¢>9§(§,&.I,§Nﬂi),
6: compute, on closed form,

(+1 & Dy, duy™ o g
Oy —argmlnz f)é log dnl‘:,‘fg(lN’i’éN’i) )

0e® =1

>

end for
8: run Algorithm 1 with R = R%.

5. APPLICATION TO STATE SPACE MODELS

To illustrate our findings within the framework of state space mod-
els, we consider a first order (possibly nonlinear) autoregressive
model observed in noise:

X1 = m(Xy) + 00 (X )Wy 1
Yo =X+ oV s

where {W};2_; and {V;};?_, are mutually independent sets of stan-
dard normal-distributed variables such that Wy is independent

of {(X;,Y;)}*_, and Vj is independent of X and {(X,7Y,) . In

this setting, we wish to approximate the filter distributions (l)k( )&
P(X; € -|Yp, .. .,Y), which in general lack closed form expressions,
for all k > 0. By the filtering recursion it holds that

Ja Jr 815 Y1) Qxk, Ay 1) O (dxg)
Jr Jr 81, Yiey1) O, dog 1) Gre(dixe)

Pry1(A) = 5)
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where Q is the transition kernel of the unobservable chain {X; }7>_
and g(x',-) is the density of P(¥; € -|X; = x), that is, the distribu-
tion of the observation Y}, given the hidden state X; = x. From (5)
we conclude that this problem can, with v = ¢, 4 = ¢y, and
Li(x,A) = [, 8(x',Yi+1) O(x,dx’), be perfectly cast into the frame-
work of Section 2, rendering sequential particle approximation of
the filter measures possible. We will now consider a fixed timestep
k, and thus drop the time index in the following.

For a model of this type, the optimal adjustment weight and the
density of optimal kernel as defined in Section 2 can be expressed
on closed form:

/V(YkJrl;m(x)v O'M%(x) + 0-3) ) (6)
JV(X/;T(X,Yk+1),T](x)), @)
where we have set A (x; 14, 6) £ exp(—(x — u)%/(262))/V2rc2,
f(XvaH) 2 [G»%(X)Ykﬂ +oym(x)]/[0(x) + o7], and n*(x) £

62(x)02/[02(x) + 62]. We may also compute the chi-square opti-
mal ad]ustment multlpher weight function ‘P* 20 when the the prior

kernel is used as proposal: at time k,

=

*
—
S =
b

I

~
*
—
s
=
~—
Il

1.0

207 Yk2+1
————— Xexp| ——5 +
202 (x) + 02 P ( o?

We recall from Corollary 3.1 that the optimal adjustment weight
function for the KLD is given by Wy, ,(x) =¥*(x).

In this (deliberately chosen) simple example we will, at
each timestep k, consider adaptation over the family {Rg(x,) =3
N (t(x,Y41),0n(x)) : x € R,0 > 0} of proposal kernels. The
mode of the proposal kernel is equal to the mode of the optimal
kernel, and the variance is proportional to the inverse of the Hes-
sian of the optimal kernel at the mode. We denote by rg(x,x') =
N (¥ 7(x, Yy 1),0M(x)) the density of Rg(x, ) with respect to the
Lebesgue measure. In this setting, at every timestep k, the KLD
between the target and proposal distributions is available on closed
form:

m(x)
202(x) + o2

[2Ye1 — m(x)]> :

My oy
dxL (A ||my'g) = ) AL

S on v
|: < Yy,
x |log y

J

Vi 1/1
M)—i—log@—i— (92 1)] ®)
—1 ON,jWy

where we denote v ; £ W*(&y,i) and Qy = ): N O
As we are scaling the optimal standard deviation, it is obvious
that
05 = argn(l)lndKL( N 7'g) = 9
0>

which may also be inferred by straightforward derivation of (8) with
respect to 6, and provides us with a reference to which the values
found by our algorithm can be compared. Note that the proposal

nl‘;‘lug* differs from the optimal instrumental distribution n,*\‘,”’e‘* by

the ad]ustment weights used: the optimal proposal in the famlly
considered actually uses uniform adjustment weights, ¥(x) = 1,
whereas as the overall optimal proposal uses optimal weights de-
fined in (6) and is therefore equal to the target distribution ug™.
This entails that

dl]XH aux )

dL (U™ |7y g

My wN,il//;\k]J Wlt/,iQN
= Wy " lo Wy " , (10)
i=1 Zj:le.,jWN_,j Zj:1 N, jYN,

which is null if all the optimal weights are equal.
The implementation of Algorithm 3 is straightforward, as the
optimization program (4) has the following closed form solution:

‘.8 25 1/2
T /
Oy = Z TR 5N,i_f o, )
i=1 Q an N.Iy;

where Ty ; 2 T(En, Y1) and N3 ; = n%(Ev,). This is a typical
case where the family of proposal kernels allows for efficient mini-
mization. Richer families that share this property may also be used,
but we are voluntarily willing to keep this toy example as simple as
possible.

We will study the following special case of the model in ques-

tion:
mx)=0, o,(x)=1/By+Bix%.

This is the classical Gaussian autoregressive conditional het-
eroscedasticity (ARCH) model observed in noise (see [1]). In this
case an experiment was conducted where we compared:

(i) a plain nonadaptive particle filter for which ¥ = 1, that is, the
bootstrap particle filter of [8],

(i1) an auxiliary filter based on the prior kernel and chi-square opti-
mal weights ‘{’}; 0

(iii) adaptive bootstrap filters with uniform adjustment multiplier
weights using numerical minimization of the empirical CSD and

(iv) the empirical KLD (Algorithm 2),

(v) an adaptive bootstrap filter using direct minimization of
gL (Hy"™ ||y 15 ). see (9),

(vi) a CE-based adaptive bootstrap filter, and as a reference,

(vi) an optimal auxiliary particle filter, i.e. a filter using the optimal
weights and proposal kernel defined in (6) and (7), respectively.

This experiment was conducted for parameters (B, B,02) =
(1,0.99,10). This setting satisfies conditions upon which the
ARCH(1) model is geometrically ergodic (which is 8| < 1); the
noise variance GVZ is equal to 1/10 of the stationary variance, which
is equal to 62 = By/(1 — B1), of the state process.

In order to design a challenging test of the adaptation proce-
dures we set, after having run a hundred burn-in iterations to reach
stationarity of the hidden chain, the observations to be constantly
equal to ¥; = 60, for every k > 110. We expect that the boot-
strap filter, having a proposal transition kernel with constant mean
m(x) = 0, will have a large mean square error (MSE) due a poor
number of particles in regions of a significant likelihood, i.e., a large
proportion of the total weight mass will be carried by a few parti-
cles only. We aim at illustrating that the adaptive algorithms, whose
transition kernels has the same mode as the optimal transition ker-
nel, adjust automatically their variance to the one of the latter and
reach a performance comparable to that of the optimal auxiliary fil-
ter.

For these observation records, Figure 1 displays MSE estimates
based on 500 filter means. Each filter used 5,000 particles. The
reference values used for the MSE estimates was obtained using the
optimal auxiliary particle filter with as many as 500,000 particles,
which also provided a pool to initialize the filters at the stationary
filtering distributions a few steps before the outlying observations.

The CE-based filter of Algorithm 3 was implemented in its
simplest form, with the inside loop using a constant number of

= N/10 = 500 particles and only L = 5 iterations: a sim-
ple prefatory study of the model indicated that the Markov chain
{64 }1>0 stabilized around the value reached in the very first step.

We set 91(\), = 10 to avoid initializing to the optimal value.

It can be seen in Figure 1(a) that using the CSD optimal weights
combined the prior kernel as proposal do not improve on the plain
bootstrap filter, precisely because the observations were chosen in
such a way than the prior kernel was helpless. On the contrary, Fig-
ures 1(a) and 1(b) show that the adaptive schemes perform exactly
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40

10 log, ,(MSE)
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100 105 110 115 120 125

Time index

(a) Auxiliary filter based on optimal asymptotic CSD weights
‘I’;z 0 with prior kernel K (o), adaptive filters minimizing the
empirical KLD (%) and CSD (x), and reference filters listed
below.

40

30

20

10 log, ,(MSE)

-30

Time index

(b) CE-based adaption (A dash-dotted line), bootstrap filter
with 3N particles (L] dashed line), and reference filters listed
below.

Figure 1: Plot of MSE performances (on log-scale), on the ARCH model with (By, B1,52) = (1,0.99, 10). Reference filters common to both
plots are the bootstrap filter ((J), the optimal filter with weights ¥* and proposal kernel density * (<), and a bootstrap using a proposal
with parameter 6y, minimizing current KLD (A continuous line). The MSE values are computed using N = 5,000 particles—except for a
reference bootstrap filter with 3N particles—and 1,000 runs of each algorithm.

similarly to the optimal filter: they all success in finding the opti-
mal scale of the standard deviation, and using uniform adjustment
weights instead of optimal ones does not impact much.

We observe clearly a change of regime corresponding to the
outlying constant observations, begininning at step 110. The adap-
tive filters recover from the changepoint in one timestep, whereas
the bootstrap filter needs several. More important is that the adap-
tive filters (as well as the optimal one) reduce, in the stationary
regime corresponding to the outlying observations, the MSE of the
bootstrap filter by a factor 10.

Moreover, for a comparison with fixed simulation budget, we
ran a bootstrap filter with 3N = 15,000 particles. This corresponds
to the same simulation budget as the CE-based adaptive scheme
with N particles, which is, in this setting, the fastest of our adaptive
algorithms. In our setting, the CE-based filter is measured to expand
the plain bootstrap runtime by a factor 3, although a basic study
of algorithmic complexity shows that this factor should be closer
to ):%:l M,{, /N = 1.5—this difference is explained by the language
used (Matlab), which benefits from the vectorization of the plain
bootstrap filter and not from the iterative nature of the CE.

The conclusion from Figure 1(b) is that for an equal runtime,
the adaptive filter outperforms, by a factor 3.5, the bootstrap filter
using even 3 times more particles.
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