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ABSTRACT

This paper explores and compares different dynamic subcar-
rier allocation (SA) schemes for single carrier (SC) FDMA
systems. A so-called maximum greedy algorithm is proposed,
which outperforms the existing greedy algorithm. We also
provide an optimum solution for SA by using the so-called
Hungarian algorithm. Furthermore, all the algorithms pre-
sented in this paper are very general and can be extended for
OFDMA systems easily. Simulation results show that the in-
vestigated dynamic SA schemes significantly outperform the
case with fixed SA. With the increase of the number of users,
dynamic SA provides improved bit error rate (BER) perfor-
mance, benefiting from multiuser diversity.

1. INTRODUCTION

Single-carrier frequency division multiple access (SC-
FDMA) [10], an alternative to orthogonal FDMA (OFDMA)
[2], is a promising transmission technology for future wire-
less communication systems such as 3GPP-LTE [2]. Un-
like OFDMA where each data symbol occupies a single fre-
quency band (subcarrier), the energy of each data symbol in
SC-FDMA is spread over several subcarriers, which com-
bats the situations where there are deep fades on certain sub-
carriers. Therefore, SC-FDMA has a lower peak-to-average
power ratio (PAPR), and a higher frequency diversity than
OFDMA [10].

Dynamic subcarrier allocation (SA) [2] to different users
plays an important role in wireless multi-carrier systems,
where the channel environment is time-varying. In [12]
adaptive SA was proposed, based on maximizing the util-
ity(rate) of the users for OFDMA systems. However it did
not consider fairness of SA, leading to the scenario where
a single user with good channel gains on all subcarriers ob-
tains much more resources than others. In [4] an iterative
greedy algorithm [7] based SA scheme was proposed for
OFDMA systems to maximize the system capacity. In [6]
and [13] greedy SA methods were employed, which guaran-
teed fairness by using the prior knowledge of how many sub-
carriers are needed by each user. However, all these meth-
ods performed SA by allocating one subcarrier at a time,
whose complexity becomes prohibitive with a large num-
ber of subcarriers [4]. In [5], a cluster-based fair greedy SA
scheme was proposed for OFDMA, where each user is allo-
cated an equal-size cluster or chunk of subcarriers each time.
Most previous work on SA was based on OFDMA systems,
however in [8] a greedy SA algorithm was proposed for the
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uplink localized SC-FDMA system, using the same cluster
scheme proposed in [5], but as mentioned in [8], it is nei-
ther necessary nor sufficient for optimality, and an optimum
solution was not provided.

In this paper, we investigate dynamic SA for SC-FDMA
systems. Our work is different in that we focus on SC-
FDMA systems and provide an extensive study of variant
SA schemes. We propose a novel so called maximum greedy
algorithm which selects the best result from different imple-
mentations of the greedy algorithm and it outperforms the
existing greedy algorithm [8]. We also provide an optimum
solution for SA by using the Hungarian algorithm [9], which
was originally employed to find the optimum matching in
graph theory [1]. To the best of our knowledge, this is the first
application of the Hungarian algorithm for dynamic SA in
wireless communications. Furthermore, the proposed maxi-
mum greedy and Hungarian algorithms presented in this pa-
per are very general and can be extended for OFDMA sys-
tems easily. Simulation results show that the three inves-
tigated dynamic SA algorithms (greedy, maximum greedy
and Hungarian algorithms) significantly outperform the case
with fixed SA. With the increase of the number of users, dy-
namic SA methods provide improved bit error rate (BER)
performance, benefiting from multiuser diversity. Complex-
ity analysis is also provided which compares the computa-
tional complexity of the algorithms presented.

The paper is organized as follows, Section 2 presents the
system model. Section 3 explains all the dynamic subcar-
rier allocation algorithms investigated in this paper, Section
4 looks into the computational complexity of the presented
algorithms and in Section 5 we present the simulation setup
and results. Finally Section 6 concludes the paper.

2. SYSTEM MODEL

A localized SC-FDMA [10] system in the uplink is consid-
ered, with U users, as illustrated in Figure 1. Each user has a
data block of M symbols which are transformed into the fre-
quency domain by the Fast Fourier Transform (FFT) and then
mapped onto the whole subcarrier set of size N (N = MU).
The mapped data are then transferred back into the time do-
main by N-point inverse FFT (IFFT), which is denoted by x,,
(u=1,---,U). Each block of N symbols is prepended with
a cyclic prefix (CP) before transmission, which is discarded
at the receiver to remove the inter-block interference and to
make the channel appear to be circular [3]. The received
signals are transferred into the frequency domain by N-point
FFT, which is followed by subcarrier de-mapping. The fre-
quency domain equalization is performed for each user, and
the equalized signals are transferred back into the time do-



main by M-point IFFT.
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Figure 1: SC-FDMA System

Equations (1) to (3) describe the system in the frequency
domain. r in (1) is the recieved signal for all users.

U
r=Y H,+n, (1)

u=1

H,, x, and n, represent the channel frequency response
matrix, transmitted data and complex AWGN with variance
Ny/2 per dimension, respectively for a particular user u. H,
is a N x N diagonal matrix with [/,1, %, - - - hyn] on its diag-
onal. All others are vectors, with size N x 1. The MMSE
equalizer matrix W, for each user is given by (2) below

W, =h{/(h,hf +NoIp) ™! )

where H is the Hermitian transpose operation, I; the M x M
identity matrix and h,, is the M x M de-mapped channel ma-
trix for each user, because each user is equalized differently
as shown in Figure 1. The equalized data d,, is given by (3)

d,=W,r, 3

where r, is each users’ M x 1 de-mapped data from r.

Note that in this frequency domain model, the user trans-
mits a null value on the subcarriers that are not allocated
to it, leaving it to be used by other users. The subcarrier
mapping function performs this operation in the system [8].
Subcarrier mapping for Localized SC-FDMA is shown in
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Figure 2: Localized SC-FDMA with N = 8 subcarriers, U =
4usersand M =2

Figure 2, where the two shaded subcarriers for each users’
row represent the cluster of subcarriers allocated to a partic-
ular user.

3. DYNAMIC SUBCARRIER ALLOCATION
SCHEMES

The aim of dynamic allocation is to give the user the best re-
source that will optimize the performance of the whole sys-
tem. Each user is matched to exactly one resource (cluster,
made up of 1 or more subcarriers). The number of subcarri-
ers assigned to each user is given by K = N /M - total number
of subcarriers divided by the data length. The clusters for all
the users form the matrix C given below,
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where U and K are the number of users and clusters respec-
tively. Each user’s subcarrier gain values are kept on the rows
of C, cluster by cluster. Each cluster is defined by,

M
[|hun|| V k=1:Kandu=1:U (4)
n=kM—M+1

Cuk = M
where k is the cluster number, u is the user number and #4,,,
are the diagonal elements from each user’s channel matrix
H,.

In this paper, it is assumed that all the users require the
same rate and the subcarriers are evenly distributed between
them. It is also assumed that all the users have the same
power requirements. Furthermore, the base station imple-
ments the SA algorithms and the results are fed-back to the
users, perfectly and instantaneously. Our C matrix of subcar-
rier gains is also viewed as a cost matrix that we are trying to
maximize according to the cost function below

U
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u

CukSuk (5)
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where ¢, are the elements of the cost (cluster) matrix C and
s,ux are elements of the choice matrix S. The choice matrix
is a binary matrix that specifies the final assigned cluster for
each user. It has a 1 on each row which identifies the cluster
assigned to a user, and it has a 1 on each column which im-
plies that only one cluster can be assigned to a certain user.
Examples of the cost and choice matrices are given below:

0.7 48 21 82 0100
c_| 81 26 62 05| o |00 10
|78 75 44 1.1 “l1 000

32 02 1.1 76 000 1

There is a factorial growth of choices, when there are lots
of users in the system, the complexity of finding the optimum
solution by direct search is highly complex, for example if
there are 64 users, there are 64! choices from which the best
has to be found.



3.1 Greedy method

A greedy algorithm has a myopic view of the solution space.
It analyzes only a local part of the solution space (subspace or
subgraph) at a time [7]. In this scenario the greedy method
emulates a situation, where a user chooses the best part of
the spectrum based on only his/her channel information, ren-
dering that part of the spectrum in-accessible to subsequent
users[5]. The following steps show how the greedy algorithm
is implemented in this paper:

1. For a certain user, corresponding to a row in cost matrix
C find the cluster of subcarriers with highest gain. As-
sign it to this user.

2. Remove this cluster of subcarriers from service.

3. Move on to the next user and perform steps 1 and 2 again,
until all the users have been allocated.

Notice from the example below that there is a bias inherent
in this algorithm, the available clusters reduce by 1 after each
iteration, therefore the last user is not left with any choice.

07 48 2.1 82 0 0 0 0
81 2.6 62 05 81 26 62 0
78 75 44 1.1 ~ |78 75 44 0
32 02 1.1 7.6 32 02 1.1 0

00 0 0 00 0 0
o 0 00 oo 0 0
0 75 44 0 00 0 0
0 02 1.1 0 00 1.1 0
000 1
100 0
S¢=10 10 0
0010

S is the final choice matrix, which is clearly not the opti-
mum result.

3.2 Maximum Greedy method

In this paper we propose a Maximum Greedy algorithm for

dynamic SA. This algorithm selects the best or maximum

from various implementations of the greedy algorithm that is

run on different local areas of the total solution space. This

is clearly more complex than the greedy method explained

above, but a trade-off between the quality of the solution de-

sired and the complexity is required. The steps in this algo-

rithm are given below:

1. Determine the different suitable local areas of the solu-
tion space.

2. For each unique area, perform the greedy algorithm
above and save the solution.

3. Find the best from saved greedy solutions.

The example below emphasizes the point that changing the

order in which the greedy algorithm is performed for the cost

matrix C, gives a different result. In this case, the greedy al-

gorithm is run starting from the last user to the first, note that

Simg is optimum. The orders represent different local areas

of the solution space and can be initialized either randomly

or in a specific way if the structure of the solution space is
known.

07 48 2.1 82 07 48 2.1 0
8.1 26 62 05 8.1 26 62 0
78 75 44 1.1 | 78 75 44 0
32 02 1.1 7.6 0 0 0 0
0 48 21 0 0 48 0 0
|0 26 620 |0 0 00
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0100

s _ |00 10

mg 1 000

0 0 0 1

3.3 Hungarian Method

The Hungarian algorithm [9] was initially used to find the op-

timum matching of a bipartite graph. It is also used to solve

The Assignment Problem in graph theory [9][1]. It employs

the use of iterative row and column reductions to find the

minimum cost of a complete matching given a certain cost
matrix, the algorithm is briefly explained with the following
steps:

1. Find minimum of each row in cost matrix C and subtract
it from the corresponding row. Zeros should appear on
each row.

2. Check if there are zeros on each column also, if yes, jump
to step 3, if no, perform step 1 on the columns. Now there
should be zeros on the row and columns.

. Try to cover the zeros with the minimum number of lines
(horizontal or vertical) in the reduced cost matrix. If min-
imum number of lines equals K (size of square cost ma-
trix), then final solution is reached.

4. Else find the minimum cost in the uncovered part of the
cost matrix, and subtract it from the uncovered rows, then
add it to the covered columns. Repeat steps 3 and 4 until
solution is found.

If finding the maximum is required, find the minimum of the
—C. An example is given below, using C given earlier,

w

—0.7 —4.8 —2.1 —82 753461 0
—8.1 —2.6 —-62 —0.5 0 5519 176
~7.8 =75 —4.4 —1.1 10 033467
—32 —02 —1.1 -7.6 447465 0
753142 0 44 0 1.1 =3.1
| 0520 76 | 0520 76
0 0 1567 0 0 1.5 67
44 74 46 0 134315 3.1



44 0 11 O 01 00
. 0 52 0 107 S, — 0 010
0O 0 15 98 H=11 0 0 0
13 43 15 O 0 0 0 1

Observe that after step 1, there are 2 columns that don’t
have any zero on it. Perform step 2. Two more zeros are
added to the system, but all the zeros can be covered by 3
lines (the 2 middle rows and the 4th column) which is less
than 4. The minimum cost, 3.1 is subtracted from the top
and bottom rows (uncovered rows), this introduces negative
numbers on the covered column. Adding 3.1 to the covered
column (4th column) removes the negative numbers and adds
more zeros to the system. For each iteration of steps 3 and
4, more zeros will be added to the system, with the last set
of zeros guaranteed to still be in place [9]. It is worth noting,
from the example above, there might be more than K zeros in
the final matrix, but only the important zeros are considered -
a single zero on a row or a column or on both a row and col-
umn. After selecting this zero, the next zero is found from the
cofactor matrix (matrix remaining after the row and column
corresponding to the first zero are removed), this continues
until the last zero is assigned. Finally Sy in the example
above, has 1’s in the positions of chosen zeros.

4. COMPLEXITY ISSUES

The computational complexity of the Hungarian algorithm
cannot be exactly estimated every-time because of the ran-
domness of the cost matrices and the heuristic nature of the
algorithm, however in [9] the estimated upper-bound on the
number of operations is (11K> + 12K? 4 31K) /6 where K
is size of the square cost matrix. Based on this, the com-
plexity order for the Hungarian algorithm is approximated
by O(K?) as shown in Table 1. As expected, the greedy algo-
rithm is less complex than the Hungarian algorithm, because
the search space for the greedy algorithm constantly reduces
after each iteration. In [5] the number of operations for the
greedy algorithm is estimated as %K (K —1). So for large
K, the complexity order of the greedy algorithm is approx-
imated by O(K?). The novel maximum greedy algorithm
proposed is more complex than the greedy algorithm by a
factor of a, where a is determined by how many greedy so-
lutions searched. Care should be taken in choosing a so that
the complexity does not become very large.

In Table 2 the normalized numerical complexity values
are estimated using the number of operations formulae and
normalized by the greedy algorithm. A 128 user system is as-
sumed with cluster/cost matrix size 128 x 128. All the meth-
ods presented in this paper are still less complex than a direct
search of K! solutions, especially when K is large. In [11]
a list of optimum methods are highlighted and some of them
have complexities comparable to greedy algorithm, an exam-
ple is the Edmonds and Karp’s algorithm with O(K?log K).
Optimized data structures [7] and faster computers currently
available, can be used to improve the efficiency of these al-
gorithms.

5. SIMULATION RESULTS

Our simulations use a fixed amount of subcarriers N = 256,
that are equally divided among the users. The normalized

| Algorithm || complexity | # of operations |

Hungarian O(K?) (11K3 + 12K* +31K) /6
Greedy 0(K?) JK(K—1)
max. Greedy || O(akK?) IK(K—1)

Table 1: Complexity Order for the presented SA algorithms

| Algorithm || Normalized Complexity |
Hungarian 2863
Greedy 1
Max.Greedy a = 128 128
Direct Search 128! =

Table 2: Normalized complexities for the presented SA algo-
rithms

delay spread is approximately 1 and the basic SC-FDMA
model explained in Section 2 is used, the users have a sin-
gle antenna and the base station has a single antenna. All
data are QPSK modulated (baseband equivalent), and Mini-
mum Mean Square Equalization (MMSE) is used for detec-
tion. a = K is used for the maximum greedy algorithm sim-
ulations. A thousand errors are averaged for each SNR level,
Monte Carlo style.

It is easily observable in Figure 3 that at all user average
BER of 107" the Hungarian algorithm has over 20dB gain
when compared to the fixed SA case. It also outperforms the
greedy and maximum greedy algorithms by about 6dB and
2dB respectively, while the maximum greedy algorithm out-
performs the greedy algorithm by about 4dB. Furthermore,
for better BER performance(10~%), the Hungarian algorithm
outperforms the greedy and maximum greedy algorithms by
about 5dB and 15dB respectively, with the maximum greedy
algorithm having a gain of about 10dB over the greedy algo-
rithm. So for different applications a trade-off can be made
on which SA scheme to use, for speech applications where
low BER performance is suitable, the greedy algorithm can
be employed, but for text or video applications, a better SA
scheme may be used.

Figures 4 and 5 show the positive impact (BER improve-
ment) with the increase of the number users in the system,
in contrast to the fixed case where the BER degrades with
increasing users. These figures also show that the Hungar-
ian algorithm outperforms the greedy and maximum greedy
algorithms, whereas the maximum greedy algorithm outper-
forms the greedy algorithm. Comparing these two figures, it
is observable that there is difference in performance between
the algorithms when the SNR is greater - the gain as users
increase is greater in Figure 5 for 15dB than in Figure 4 for
10dB.

6. CONCLUSION

In this paper, we proposed dynamically allocating subcarri-
ers to different users in a Single Carrier - FDMA uplink sys-
tem. We have shown that using the Hungarian algorithm far
out performs existing greedy algorithms in terms of BER, but
with a higher computational complexity. We also proposed a
novel maximum greedy algorithm for SA, that outperforms
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Figure 3: Different SA schemes for U = 128 users, N = 256
subcarriers and a = 128 for max. greedy algorithm
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Figure 4: Effect of increasing users for different SA schemes
with SNR = 10dB

the existing greedy SA algorithm. Finally we conclude that
effectively carrying out dynamic SA greatly increases the ef-
ficiency of multi-user communication systems, thus more ef-
fort should be put into these areas of research.
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