
WHAT DO QUALITY MEASURES PREDICT IN BIOMETRICS?

Krzysztof Kryszczuk† and Andrzej Drygajlo††

† IBM Zurich Research Laboratory, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
email: kkr@zurich.ibm.com

†† Swiss Federal Institute of Technology Lausanne (EPFL), STI-IEL-LIDIAP, CH-1015 Lausanne, Switzerland
email: andrzej.drygajlo@epfl.ch

ABSTRACT
This paper is discusses the role of quality measures in bio-
metric classification. We challenge a common notion that
quality measures are performance predictors of the baseline
biometric classifier. Instead, we postulate that quality mea-
sures are class-independent classification features, and as
such are conditionally relevant class predictors. We present
a systematic, probabilistic approach towards error prediction
in biometric classification systems, where quality measures
play an integral role in a stacked classifier ensemble. We
demonstrate the results of error prediction in face verifica-
tion using the proposed method.

1. INTRODUCTION

Quality of biometric signals and their measurement have
recently become a common research topic of many academic
and industrial laboratories. The reason for this is that exist-
ing large scale deployments of biometric technologies have
systematically encountered the problem of inconsistent data
quality. The interest in biometric data quality is reflected
in the fact that entire scientific workshops have been ded-
icated to this topic1. Biometric conferences have recently
attracted a significant volume of research papers on incorpo-
rating quality measures into biometric classification. One of
the most important questions about the role of quality infor-
mation is - what can it really be used for?

A prevailing notion is an intuitive one - that quality in-
formation predicts classification performance of the baseline
classifier. Hsu et al. [1] postulate that the quality measures
for face images ought to be predictors of classification perfor-
mance. Chen et al. [2] propose a quality measure that is ex-
plicitly designed to predict performance of an automatic fin-
gerprint matcher. Capelli et al. [3] designed a series of exper-
iments that elicit the relationship between fingerprint quality
aspects (acquisition area, resolution accuracy, geometric dis-
tortions) and average recognition performance of four dif-
ferent fingerprint recognition algorithms. They showed a
non-linear, monotonic relationship between the quality mea-
sures and error rates. Ko and Krishnan [4] provide arguments
that "better captured fingerprint image quality will have bet-
ter match accuracy". They also express their conviction that
quality metrics are good predictors of fingerprint matching
performance. Grother and Tabassi [5] present an extensive
study of a popular quality measure algorithm, NFIQ [6]. The
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1Biometric Sample Quality Workshops organized by the NIST in 2006
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authors evaluate the algorithm by analyzing how well it pre-
dicts the classification performance of the NFIS fingerprint
matching software. Alonso-Fernandez et al. [7] also focus on
fingerprint quality metrics. They evaluate a series of quality
assessment algorithms designed for fingerprint images. The
authors follow the approach of Grother and Tabassi [5] of ap-
plying the performance prediction criterion when comparing
the algorithms. The notion of a performance-predicting func-
tion of quality measures in biometrics seems to be widely
accepted.

It is well-known that quality degradation of observed bio-
metric signals may lead to a degradation of classification per-
formance. This effect can be attributed to the fact that a low
quality biometric signal contains lessbiometric information
than a high quality one [8]. If such a simple relationship
is universally present in biometric systems then it would in-
deed seem like a straightforward conclusion to assume that a
quality measure must be a predictor of performance. Here is
the problem: the concepts of "high" and "low" quality are at
best vague. What is the criterion that allows one to tell a "low
quality" signal from a "high quality" one? Human judgement
of image quality has often little to do with the discriminative
biometric content of the signal [9] and is linked to the per-
ceived signal fidelity. Therefore, if we discard any definitions
that involve human judgement, the only criterion remaining
is the actual classification performance. But if classification
performance is a criterion for labeling a signal’s quality, then
the argument that quality measures predict performance is
clearly circular.

Youmaran and Adler [8] propose to describe the relative
change of signal quality in terms of differences in divergence
of classification feature distributions for signals of nominal
and degraded quality. That is a sound idea, but since the au-
thors employ the very same features for deriving their qual-
ity estimator as used for classification (for instance, PCA
features for face recognition), this approach is equivalent
to looking at the baseline classifier confidence, clad in an
information-theoretic wrap-up. As such, their quality mea-
sure predicts classifier performance as much as a confidence
measure otherwise would.

In order to understand what, if anything at all, quality
measures are capable of predicting, it is necessary to for-
mulate the actual role that quality measures can play in a
biometric classification system. In our previous work we
have defined quality measures as auxiliary features, used to-
gether with baseline classifier scores inQ−stack, a stacking-
based hierarchical classifier ensemble [10]. This general-
ized formulation has been demonstrated to encompass pre-
vious heuristic methods of classification with quality mea-
sures in single-, and multiple-classifier scenarios, including



multimodal biometric classification.
In this paper we build on this framework to specifically

address the issue of predictive capabilities of quality mea-
sures. In particular, we substantiate claims that in the gen-
eral case, quality measures are not predictors of performance
of the baseline biometric classifier. Instead, we show that
quality measures, as conditionally-relevant classification fea-
tures, can be used to predict the accuracy of classification
decisions of a second-level Bayesian classifier in a stacking
architecture ofQ−stack. We substantiate this claim using a
face matching example.

The rest of the paper consists of an overview of existing
intuitive notions of quality and quality measures and their
role in biometric classification in Section 2, a summary of the
Q−stackframework, with its extension to error prediction in
Section 3, and a theoretical discussion of the predictive func-
tion of quality measures in Section 4, and an evaluation using
a face matching example in Section 5. Section 6 concludes
the paper.

2. INTUITIVE NOTIONS OF QUALITY AND
QUALITY MEASURES

Figure 1 shows a currently predominant notion of the role of
quality measures in biometric classification systems [1, 2, 3,
5, 4].
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Figure 1: A commonly accepted structure of a biometric clas-
sification system with quality measures. Quality measures
are used to directly predict the errors of the baseline classi-
fier

In Figure 1 an arbitrary biometric signal is classified us-
ing a dedicated baseline classifier. The classification deci-
sion is taken based on the output of the baseline classifier.
In parallel, the quality of the classified biometric signals is
measured. Based on so obtained quality measures, authors
cited in Section 1 postulate to predict the performance of the
baseline classifier or to predict the individual classification
errors. A central concept that surfaces in an overwhelming
majority of papers is the notion that biometric signals ofhigh
qualityare more likely to be correctly classified than those of
low quality. From here the intuitive understanding of the role
quality measurement is straightforward. After the biometric
signal is recorded, its quality is measured. If the measured
quality fails to satisfy some preset criterion, it in a waypre-
dictsthat the baseline classifier is likely to commit a classifi-
cation error.

Despite its deceiving clarity, this notion of performance
prediction using quality measures suffers from a logical
weakness, a direct consequence of the circular definition dis-
cussed in Section 1. We show the consequences of this weak-
ness in two illustrative counterexamples, in Section 4.

3. Q−STACK: A SYSTEMATIC FRAMEWORK OF
CLASSIFICATION WITH QUALITY MEASURES

Figure 2 shows a diagram of theQ− stack architecture.
Identity-related information is composed ofn biometric sig-
nalss = [s1,s2, ...,sn], classified byn baseline classifiers, re-
sulting in a score vectorx = [x1,x2, ...,xn]. At the same time,
the signals undergo quality measurements, resulting inm
quality signalsqm = [qm1,qm2, ...qmm]. In general,n 6= m is
permitted, since one quality measure can be pertinent to mul-
tiple signals. Vice-versa, multiple quality measures can be
used to characterize one signal. The score vector is concate-
nated with the quality measure vector to form an evidence
vectore = [x,qm]. The evidence vectore becomes a fea-
ture vector for the stacked classifier. The architecture pre-
sented in Figure 2 is a generalization of single- and multiple-
classifier systems, including multimodal approaches. If no
quality measures are present, the architecture shown in Fig-
ure 2 performs a multimodal score-level fusion.
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Figure 2: Q− stackarchitecture, in which baseline classi-
fier scores and quality measures jointly serve as features to a
second-level, stacked classifier. Confidence measures of the
stacked classifier can be used to predict errors of the stacked
classifier.

The proposed method ofQ− stack is a generalized
framework which encompasses previously reported methods
of using quality measures in biometric verification [10]. In
particular, previously reported methods can be shown to be
case- and data-specific, largely heuristic approximations of
an optimal decision boundary in the evidence space. As op-
posed to the ad-hoc methods which can hardly be general-
ized to new data sets and classifier architectures,Q− stack
attempts to approach the optimal decision function by learn-
ing the causal dependencies between quality information and
baseline classifier scores from available data.

As shown in Figure 2, in the scheme ofQ−stackthe er-
ror prediction is performed using the output of the stacked
classifier. In the following Section 4 we will explain why
this is a better and theoretically justified manner of perform-
ing error prediction. For a detailed discussion ofQ− stack,
a classifier-stacking approach to classification with quality
measures the reader is referred to [10].

4. QUALITY MEASURES AND ERROR
PREDICTION

4.1 What do quality measures not predict?
The prevailing notion of the role of quality information is
that it predicts the errors of the baseline classifier, as shown
in Figure 1. In this section we show why this notion is incor-
rect. In the classifier ensemble architecture shown in Figure
2 the final classification decision is taken based on the output
(score) of the second-level, stacked classifier. Let us assume



without a loss of generality2 that the classification system is
devised to assign class labelsA andB to observationx. Under
the assumption of Bayesian optimality of the baseline classi-
fier, the predicted classification error, and thus the classifier
performance, can be expressed as a continuous and mono-
tonic function f of overlapD between distributions of obser-
vationsx, given their actual class alignment and respective
quality measure,

ER(qmi) = f (D(p(x|A,qmi), p(x|B,qmi))). (1)

The choice of an overlap measureD is im-
material, for instance the likelihood difference
D(p(x|A,qmi), p(x|B,qmi)) = |p(x|A,qmi) − p(x|B,qmi)|
can be used. If the quality measure is a performance
predictor then the relationship between the quality measure
and the error measure must have a functional character
qm 7→ ER(qm): each possible value ofqm is assigned one
and only oneER(qm). In order to show that this condition is
not necessarily satisfied, we present an example where for
one value ofqm the error measure given by Equation 1 has
more than one value,

∃qmi ,k6=l : (ER(qmi) = k)∧ (ER(qmi) = l). (2)
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Figure 3: A toy embodiment of the condition given by Equa-
tion 2 - there exists a value ofqmi that predicts two different
values of|p(x|A)− p(x|B)|, and consequently ofER(qmi).

A schematic of such situation is given in Figure 3. One
could argue that if the quality measure behaves as in Figure
3 then it is not agoodquality measure. But such argument is
strikingly similar to the circular argument discussed in Sec-
tion 1: agoodquality measure must predict performance and
therefore a quality measure that does not predict performance
is NOT agoodquality measure. The fact is that the quality
measureqmfrom the example shown in Figure 3 helps reach
better class separation than can be achieved in the domain of
x alone:

D(p(x|A), p(x|B)) > D(p(x,qmi |A), p(x,qmi |B)). (3)

2Multi-class classifiers can be represented as a combination of di-
chotomizers [11].
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Figure 4: A toy example, where differentqmi 6= qmj pre-
dict the same baseline classifier performanceER(qmi) =
ER(qmj). The class-independent quality informationqmal-
lows for much better class separation than using the baseline
classifier alone.

Another illustrative example of the fallacy of consider-
ing quality measures as performance predictors of the base-
line classifier is shown in Figure 4. Here, the dependence
betweenx andqm is straightforward - close to linear. Two
values ofqmi 6= qmj predict the same baseline classification
performanceER(qmi) = ER(qmj), which, according to the
intuitive definition cited in Section 1, renders this quality
measure useless. Yet, in the classification problem shown in
Figure 4 the quality measure allows for a clearly better class
separation in the evidence space jointly defined byx andqm,
than using baseline scoresx alone.

Obviously, this makes quality measureqma usefulclas-
sification feature. Since by defaultp(qm|A)= p(qm|B) is ad-
missible and actually observed in practice [10],qmbecomes
a conditionally relevant feature. Classification features are
not performance predictors, they areclass predictors[12].
This makes biometric quality measuresconditionally rele-
vant class predictors.

4.2 What do quality measures actually predict?
The distributions given in Figures 3 and 4 are synthetic ex-
amples that demonstrate the fallacy of the statement that the
quality measures predict classification performance. Admit-
tedly such distributions are not frequently observed in prac-
tice, and one could argue that for practical, engineering pur-
poses quality measures could be used as a coarsepredictor of
performance. In this section we show that even if that is the
case, it is not the baseline classifier whose performance one
should care to predict.

Compare again the diagrams in Figures 1 and 2. In both
figures quality measures play a role in error prediction, but in
the former case, it is the errors of the baseline classifier that
are being predicted. In the latter case, one strives to predict
the performance of the second-layer, stacked classifier. As
demonstrated in [10], an appropriately chosen stacked clas-
sifier can offer an average classification accuracy superior to
that of the baseline classifier, given that the quality measures
are statistically dependent on the baseline classifier scores.



Therefore it is this classifier’s errors that should be predicted.
Since in the classification ensemble shown in Figure 2

both quality measuresqmand baseline classifier scoresx are
features to the stacked classifier, its errors can be predicted
in a probabilistic manner, by computing the probability of
error given available evidence. If given observationsi is as-
signed a class labelωi ∈ Ω = [A,B] by the stacked classifier
using evidence vectorei = [xi ,qmi ], the probability of correct
classification can be expressed by the Bayes rule:

P(ω |xi ,qmi) =
p(xi ,qmi |ω)P(ω)

∑ω p(xi ,qmi |ω)P(ω))
. (4)

Here,P(ω |xi ,qmi) is a subjective Bayesian degree of be-
lief (credence) in the correctness of a single classifier deci-
sion [13].

5. PERFORMANCE PREDICTION WITH QUALITY
MEASURES: EXPERIMENTAL EVALUATION

The experiments reported in this section demonstrate that
quality measures, as conditionally relevant classification fea-
tures in theQ−stackarchitecture, can serve as conditionally-
relevant class predictors and consequently help predict the
performance of the stacked classifier. For the purpose of this
demonstration, we used a face matching experiment, con-
ducted using face images of 200 subjects (training set: 50
subjects, testing set: 150 subjects) from the BioSec database,
baseline corpus [14]. The experiments involved one-to-one
sample matching. Face matching is a hard classification task
with relatively high observed error rates, hence it provided
sufficient errors to show the effectiveness of the presented
error prediction paradigm. All face images were cropped
manually in order to avoid the impact of face localization
algorithms on the matching performance. All images were
photometrically normalized [15].

In our experiments we used the following two face
matchers: 1.DCT - local DCTmod2 features and a Bayes
classifier based on feature distributions approximated by
Gaussian Mixture Models (GMM)[16]: scores produced by
theDCT matcher denoted asxf 1, and 2.PCA- Mahalanobis
distance between globalPCA feature vectors. ThePCApro-
jection space was found using all images from the devel-
opment dataset. The scores produced by thePCA matcher
are denoted asxf 2. The two face matchers were chosen be-
cause they both operate on very different features. The local
DCTmod2 features encode mostly high spacial frequencies,
while the projection of the face images on thePCAsubspace
emphasizes lower spacial frequencies.

In the experiments reported here we used two face im-
age quality measures - a normalized two-dimensional cross-
correlation coefficient with an average face template, denoted
as qmf 1, and a probabilistic quality measure which evalu-
ates how well do the used classification models account for
the observed data. This quality measure is based on the
DCTmod2 classification features, and denoted asqmf 2. For
details on these quality measures the reader is referred to
[10].

The experiments reported here were conducted using a
classifier ensemble shown in Figure 2. A Bayesian classi-
fier with GMM class models was deployed as the stacked
classifier. Sample evidence distributions and decision hyper-
surfaces created by stacked classifiers are shown in Figure
5. The estimates of posterior probabilities of the stacked

Average Imposter (class A) Genuine (class B)
e = [xf 1]

ER 0.146 0.149 0.142
R 0.153 0.192 0.113
δ -0.007 -0.043 0.029

e = [xf 1,qmf 1]
ER 0.132 0.149 0.115
R 0.130 0.145 0.116
δ 0.002 0.005 -0.001

e = [xf 2]
ER 0.272 0.209 0.334
R 0.253 0.288 0.217
δ 0.019 -0.079 0.117

e = [xf 2,qmf 1]
ER 0.220 0.176 0.264
R 0.184 0.192 0.176
δ 0.036 -0.016 0.088

e = [xf 2,qmf 2]
ER 0.220 0.176 0.264
R 0.184 0.192 0.176
δ 0.036 -0.016 0.088

e = [xf 1,xf 2]
ER 0.127 0.127 0.127
R 0.124 0.150 0.097
δ 0.003 -0.024 0.031

e = [xf 1,xf 2,qmf 1,qmf 2]
ER 0.117 0.118 0.116
R 0.107 0.119 0.094
δ 0.010 -0.001 0.022

Table 1: Evaluation of credence estimates using the account-
ability criterion. The mean difference between actual ob-
served error and the mean credence estimates after 100 ex-
perimental iterations is given byδ

classifiers were used as error predictors for single classifier
decisions. In order to show that the presence of quality mea-
sures allows for precise prediction of the errors of the stacked
rather than the baseline classifier, several experiments with,
and without the use of quality measures were conducted. In
these experiments the baseline classifiers (DCT andPCA) are
used separately, and together in a multi-classifier scenario.
For each experiment the actual and predicted error rates were
recorded, where the predicted error ratesRwere computed as

R=
1
Iω

∑
Iω

(1−P(ω |ei)), (5)

whereIω is the actual number of samples in the evalua-
tion data set, per classω , andei is an evidence vector con-
taining either scores alone, or scores and quality measures.
The combinations of scores and quality measures used in
the reported experiments are given in Table 1. If the esti-
mates ofP(ω |ei) are accurate, then on average taken over
a sufficiently large data set, thea priori estimates of error
probabilities of individual classifier decisions must account
for the actual error ratesER, observeda posteriori. This
notion,referred to asaccountability criterionfor estimating
error prediction accuracy [13], can be expressed in terms of
δ = ER−R. The values ofER, R andδ are reported per
class, and as a total average. The results of the experiments
are given in Table 1.

The baseline classifier error rates are given by evidence
combinationse = [xf 1], e = [xf 2] ande = [xf 1,xf 2]. The re-
sults gathered in Table 1 clearly show that quality measures
can be effectively used for improving the classification per-
formance inQ− stackarchitecture, as shown in Figure 2,
with respect to the baseline classifier results. For all evidence
configurations, the proposed error prediction method worked
well and accurately predicted observed error rates with er-
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Figure 5: Classification in the evidence space: sample distributions and stacked classifiers for face matching, Biosec database
using (a)DCT and (b)PCAbaseline classifiers and corresponding quality measures.

rors given by the correspondingδ . The values ofδ are at
least one order of magnitude smaller than the predicted error
rates.

6. CONCLUSIONS

In this paper we have presented arguments against the com-
monly encountered, intuitive interpretation of quality mea-
sures as performance predictors in biometric classification.
We have proposed an alternative, rigorous view on the role
of quality measures in biometric classification and error pre-
diction, in which the quality measures are conditionally rel-
evant class predictors. We have proposed an error prediction
architecture based on a stacked classifier ensemble, where a
Bayesian classifier returns posterior probabilities used as cre-
dences in single decisions’ correctness. We have instantiated
the proposed error prediction system using a face verifica-
tion example, using two different classifiers and two different
quality measures.
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