WHAT DO QUALITY MEASURESPREDICT IN BIOMETRICS?
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ABSTRACT authors evaluate the algorithm by analyzing how well it pre-

This paper is discusses the role of quality measures in pidlicts the classification performance of the NFIS fingerprint
metric classification. We challenge a common notion thaf@tching software. Alonso-Fernandez etal. [7] also focus on

quality measures are performance predictors of the baselidli!9€rPrint quality metrics. They evaluate a series of quality

biometric classifier. Instead, we postulate that quality mea@SSessment algorithms designed for fingerprint images. The

sures are class-independent classification features, and d&hors follow the approach of Grother and Tabassi [S] of ap-
such are conditionally relevant class predictors. We presefyind the performance prediction criterion when comparing
a systematic, probabilistic approach towards error predictiof!€ @lgorithms. The notion of a performance-predicting func-
in biometric classification systems, where quality measuredOn Of quality measures in biometrics seems to be widely
play an integral role in a stacked classifier ensemble. Wwaccepted. . _ .
demonstrate the results of error prediction in face verifica- Itis well-known that quality degradation of observed bio-

tion using the proposed method. metric signals may lead to a degradation of classification per-
formance. This effect can be attributed to the fact that a low
1. INTRODUCTION quality biometric signal contains lesgometric information

than a high quality one [8]. If such a simple relationship
is universally present in biometric systems then it would in-

Quiality of biometric signals and their measurement haveleed seem like a straightforward conclusion to assume that a
recently become a common research topic of many academigiality measure must be a predictor of performance. Here is
and industrial laboratories. The reason for this is that existthe problem: the concepts of "high" and "low" quality are at
ing large scale deployments of biometric technologies havbest vague. What is the criterion that allows one to tell a "low
systematically encountered the problem of inconsistent datguality" signal from a "high quality" one? Human judgement
quality. The interest in biometric data quality is reflectedof image quality has often little to do with the discriminative
in the fact that entire scientific workshops have been dedsiometric content of the signal [9] and is linked to the per-
icated to this topit. Biometric conferences have recently ceived signal fidelity. Therefore, if we discard any definitions
attracted a significant volume of research papers on incorpdhat involve human judgement, the only criterion remaining
rating quality measures into biometric classification. One ofs the actual classification performance. But if classification
the most important questions about the role of quality inforperformance is a criterion for labeling a signal’'s quality, then
mation is - what can it really be used for? the argument that quality measures predict performance is

A prevailing notion is an intuitive one - that quality in- clearly circular.
formation predicts classification performance of the baseline  Youmaran and Adler [8] propose to describe the relative
classifier. Hsu et al. [1] postulate that the quality measureshange of signal quality in terms of differences in divergence
for face images ought to be predictors of classification perforef classification feature distributions for signals of nominal
mance. Chen et al. [2] propose a quality measure that is exind degraded quality. That is a sound idea, but since the au-
plicitly designed to predict performance of an automatic finthors employ the very same features for deriving their qual-
gerprintmatcher. Capelli et al. [3] designed a series of expeity estimator as used for classification (for instance, PCA
iments that elicit the relationship between fingerprint qualityfeatures for face recognition), this approach is equivalent
aspects (acquisition area, resolution accuracy, geometric dis looking at the baseline classifier confidence, clad in an
tortions) and average recognition performance of four difinformation-theoretic wrap-up. As such, their quality mea-
ferent fingerprint recognition algorithms. They showed asure predicts classifier performance as much as a confidence
non-linear, monotonic relationship between the quality meameasure otherwise would.
sures and error rates. Ko and Krishnan [4] provide arguments |n order to understand what, if anything at all, quality

that "better captured fingerprintimage quality will have bet-measures are capable of predicting, it is necessary to for-
ter match accuracy”. They also express their conviction thaqylate the actual role that quality measures can play in a
quality metrics are good predictors of fingerprint matchingpjometric classification system. In our previous work we
performance. Grother and Tabassi [5] present an extensiVfave defined quality measures as auxiliary features, used to-
study of a popular quality measure algorithm, NFIQ [6]. Thegether with baseline classifier score§)r stack a stacking-

The research reported in this paper was conducted when K. Kryszczugased hlerarphlcal classifier ensemble [10]' This general_
was with the Swiss Federal Institute of Technology Lausanne (EPFL). _ed formu,lat,lon has been demo,n_Strated tQ encompass pre-
Ljometric Sample Quality Workshops organized by the NIST in 2006Vi0US heuristic methods of classification with quality mea-

and 2007. sures in single-, and multiple-classifier scenarios, including




multimodal biometric classification. 3. Q—STACK A SYSTEMATIC FRAMEWORK OF
In this paper we build on this framework to specifically CLASSIFICATION WITH QUALITY MEASURES

address the isfsue of predictive qapabilitjes of qu_ality Mearigure 2 shows a diagram of th@ — stack architecture.
sures. In particular, we substantiate claims that in the 9€MNgyentity-related information is composed mbiometric sig-
eral case, quality measures are not predictors of performanggiss — [, 's,. ... 5], classified byn baseline classifiers, re-
of the baseline biometric classifier. Instead, we show thaéulting in a score vectot = [x1, Xy, ..., Xp]. At the same time,
quality measures, as conditionally-relevant classification fegy,q signals undergo quality ’méaéurements resultingnin
tures, can be used to predict the accuracy of classificatio ality signalsym = [qrmy, g, ....qMy). In genérmmé mis
decisions of a second-level Bayesiar) cIassjfier i_n a syacking‘;rmitted’ since one qua’lity rﬁeasure can be pertinent to mul-
architecture ofQ — stack We substantiate this claim using a tiple signals. Vice-versa, multiple quality measures can be
face matching example. used to characterize one signal. The score vector is concate-
The rest of the paper consists of an overview of existinghated with the quality measure vector to form an evidence
intuitive notions of quality and quality measures and theirvectore = [x,qm]. The evidence vectas becomes a fea-
role in biometric classification in Section 2, a summary of theture vector for the stacked classifier. The architecture pre-
Q— stackframework, with its extension to error prediction in sented in Figure 2 is a generalization of single- and multiple-
Section 3, and a theoretical discussion of the predictive funclassifier systems, including multimodal approaches. If no
tion of quality measures in Section 4, and an evaluation usinguality measures are present, the architecture shown in Fig-
a face matching example in Section 5. Section 6 concludagre 2 performs a multimodal score-level fusion.

the paper.
/ Q-stack \
2. INTUITIVE NOTIONSOF QUALITY AND ey ¥ ﬁ»
QUAL I TY M EASURES ‘ EVIDENCE STACKED
Figure 1 shows a currently predominant notion of the role of BAsELNE ) oo
quality measures in biometric classification systems [1, 2, 3, CrAssIER
5, 4]. \_ J
Figure 2: Q — stackarchitecture, in which baseline classi-
A e pRiRROR fier scores and quality measures jointly serve as features to a
second-level, stacked classifier. Confidence measures of the

stacked classifier can be used to predict errors of the stacked

classifier.
CEI;.C\ASS%SII}U\\‘EER —#<_CLASS DECISION . i
The proposed method of) — stack is a generalized

framework which encompasses previously reported methods
5of using quality measures in biometric verification [10]. In
garticular, previously reported methods can be shown to be
are used to directly predict the errors of the baseline classf2Se- and data-specific, largely heuristic approximations of
fier an optimal decision boundary in the evidence space. As op-
posed to the ad-hoc methods which can hardly be general-
) ] ] o ] -~ ized to new data sets and classifier architectufes,stack
~InFigure 1 an arbitrary biometric signal is classified us-attempts to approach the optimal decision function by learn-
ing a dedicated baseline classifier. The classification decjng the causal dependencies between quality information and
sion Is taken ba.sed on the Output Of the basehne Class|f|q5ase|ine classifier scores from available data.
In parallel, the quality of the classified biometric signals is  As shown in Figure 2, in the scheme@f- stackthe er-
measured. Based on so obtained quality measures, authQgs prediction is performed using the output of the stacked
cited in Section 1 postulate to predict the performance of thg|assifier. In the following Section 4 we will explain why
baseline C|aSSifier or to prediCt the indiVidual C|aSSificatiOths is a better and theoretica”y Just|f|ed manner Of perform_
errors. A central concept that surfaces in an overwhelminmg error prediction. For a detailed discussion®# stack

majority of papers is the notion that biometric signalfigh 5 classifier-stacking approach to classification with quality
qualityare more likely to be correctly classified than those ofmeasures the reader is referred to [10].

low quality. From here the intuitive understanding of the role

quality measurement is straightforward. After the biometric 4. QUALITY MEASURESAND ERROR

signal is recorded, its quality is measured. If the measured PREDICTION

quality fails to satisfy some preset criterion, it in a ware- . ]

dictsthat the baseline classifier is likely to commit a classifi-4-1 What do quality measures not predict?

cation error. The prevailing notion of the role of quality information is
Despite its deceiving clarity, this notion of performancethat it predicts the errors of the baseline classifier, as shown

prediction using quality measures suffers from a logicalin Figure 1. In this section we show why this notion is incor-

weakness, a direct consequence of the circular definition disect. In the classifier ensemble architecture shown in Figure

cussed in Section 1. We show the consequences of this weakthe final classification decision is taken based on the output

ness in two illustrative counterexamples, in Section 4. (score) of the second-level, stacked classifier. Let us assume

BIOMERIC
DATA




without a loss of generality that the classification system is
devised to assign class lab@&landB to observatiox. Under

the assumption of Bayesian optimality of the baseline classi-
fier, the predicted classification error, and thus the classifier
performance, can be expressed as a continuous and mono-
tonic functionf of overlapD between distributions of obser-
vationsx, given their actual class alignment and respective
quality measure,

ER(gm) = f(D(p(x|A,gm), p(x|B,am))). (1)

The choice of an overlap measur® is im-
material, for instance the likelihood difference
D(p(x|A,gm), p(x|B,am)) = [p(x|A,gm) — p(x|B,qm)|
can be used. If the quality measure is a performance
predictor then the relationship between the quality measure q
and the error measure must have a functional character
gm— ER(gm): each possible value afmis assigned one
and only on€ER(gm). In order to show that this condition is
not necessarily satisfied, we present an example where f
one value ofgmthe error measure given by Equation 1 haﬁ0
more than one value,

Sgmica | (ER@M) =K A (ERQGm) =1). ()

[p(x|A)—p(x[B)|

X X2

Figure 4: A toy example, where differegm # qm; pre-

ict the same baseline classifier performafd®qm) =
R(am;). The class-independent quality informatigm al-
ws for much better class separation than using the baseline
classifier alone.

Another illustrative example of the fallacy of consider-
ing quality measures as performance predictors of the base-
line classifier is shown in Figure 4. Here, the dependence
betweenx andgmis straightforward - close to linear. Two
values ofgm # qm; predict the same baseline classification
performanceE R(gm) = ER(gmy;), which, according to the
intuitive definition cited in Section 1, renders this quality
measure useless. Yet, in the classification problem shown in
Figure 4 the quality measure allows for a clearly better class
separation in the evidence space jointly defined bypdgm,
than using baseline scoreslone.

Obviously, this makes quality measugma usefulclas-
sification feature Since by defaulp(gm/A) = p(qmB) is ad-

[ missible and actually observed in practice [1ffhbecomes

| a conditionally relevant feature Classification features are
not performance predictors, they atkass predictorqd12].
This makes biometric quality measuresnditionally rele-
vant class predictors

[P(x|A)-p(x[B)|

I
I
| |
X1 X x2
Figure 3: A toy embodiment of the condition given by Equa-#2 What do quality measures actually predict?
tion 2 - there exists a value g that predicts two different The distributions given in Figures 3 and 4 are synthetic ex-
values of| p(x|A) — p(x|B)|, and consequently &R(gm). amples that demonstrate the fallacy of the statement that the
quality measures predict classification performance. Admit-
A schematic of such situation is given in Figure 3. Onetedly such distributions are not frequently observed in prac-
could argue that if the quality measure behaves as in Figuigce, and one could argue that for practical, engineering pur-
3 then it is not yoodquality measure. But such argumentis poses quality measures could be used as a cpagdetor of
strikingly similar to the circular argument discussed in Secperformance In this section we show that even if that is the
tion 1. agoodquality measure must predict performance anccase, it is not the baseline classifier whose performance one
therefore a quality measure that does not predict performanegould care to predict.
is NOT agoodquality measure. The fact is that the quality =~ Compare again the diagrams in Figures 1 and 2. In both
measurgmfrom the example shown in Figure 3 helps reachfigures quality measures play a role in error prediction, butin
better class separation than can be achieved in the domainle former case, it is the errors of the baseline classifier that
x alone: are being predicted. In the latter case, one strives to predict
the performance of the second-layer, stacked classifier. As
demonstrated in [10], an appropriately chosen stacked clas-
D(p(x|A), p(x(B)) > D(p(x,am|A), p(x,am|B)). ~ (3)  sifier can offer an average classification accuracy superior to
2Multi-class classifiers can be represented as a combination of dithat of the baseline classifier, given that the quality measures
chotomizers [11]. are statistically dependent on the baseline classifier scores.




Therefore it is this classifier’s errors that should be predicted. R
Since in the classification ensemble shown in Figure 2 ER| 0146 0.149 0142
both quality measuregmand baseline classifier scoreare § %(1)(5)3 %% 8-32193
features to the stacked classifier, its errors can be predicted — o=y, GFra] '
in a probabilistic manner, by computing the probability of ER[ 0132 0.149 0.115
error given available evidence. If given observatipis as- § 8-33,3 8-33: _%%xl)?
signed a class labeh € Q = [A,B] by the stacked classifier : o= X2 :
using evidence vecta = [x;,gm], the probability of correct ER[ 0272 0.209 0.334
classification can be expressed by the Bayes rule: R 9258 9288 921
= [Xiz,qmy
xj,qm|w)P(w ER | 0.220 ° Sﬁ%eq - 0.264
P(wlxi,qm) = P (4) R | o0.184 0.192 0.176
1y - . . . .
Y o P(xi,am|w)P(w)) 5 | 00% -0.016 0.088
Here,P(w|xj,qm) is a subjective Bayesian degree of be- ER [ 0.220 - :o[.xlf%qm] 0.264
lief (credence) in the correctness of a single classifier deci- R | 0184 0.192 0.176
sion [13] 3 | 00% -0.016 0.088
. ER [ 0.127 - T)lﬁ?xfﬂ 0.127
5. PERFORMANCE PREDICTION WITH QUALITY § 8-35; _%(1)52’2 8-83?17
MEASURES: EXPERIMENTAL EVALUATION N e:[xflgflzigmu,quz] -
The experiments reported in this section demonstrate that R | 0.107 0.110 0.004
quality measures, as conditionally relevant classification fea- 5 [ 0010 -0.001 0.022

tures in theQ — stackarchitecture, can serve as conditionally- ) ) )

relevant class predictors and consequently help predict thEable 1: Evaluation of credence estimates using the account-
performance of the stacked classifier. For the purpose of th@Pility criterion. The mean difference between actual ob-
demonstration, we used a face matching experiment, corserved error and the mean credence estimates after 100 ex-
ducted using face images of 200 subjects (training set: 5Berimental iterations is given by

subjects, testing set: 150 subjects) from the BioSec database,

baseline corpus [14]. The experiments involved one-to-one _ ) -
sample matching. Face matching is a hard classification tagiassifiers were used as error predictors for single classifier
with relatively high observed error rates, hence it providedl€cisions. In order to show that the presence of quality mea-
sufficient errors to show the effectiveness of the presentegtires allows for precise prediction of the errors of the stacked
error prediction paradigm_ All face images were Croppedather_than the baseline C|a:SSIf|er, several experiments with,
manually in order to avoid the impact of face localizationand without the use of quality measures were conducted. In

algorithms on the matching performance. All images werdhese experiments the baseline classifiBGT andPCA) are
photometrically normalized [15]. used separately, and together in a multi-classifier scenario.

In our experiments we used the following two face For each experimentthe actual and predicted error rates were
matchers: 1.DCT - local DCT mod features and a Bayes recorded, where the predicted error réRagere computed as
classifier based on feature distributions approximated by
Gaussian Mixture Models (GMM)[16]: scores produced by R=— 1 (1-P(wlei)) (5)
the DCT matcher denoted ag, and 2.PCA- Mahalanobis leo Z ’
distance between globBICAfeature vectors. ThECApro-
jection space was found using all images from the devel- wherel,, is the actual number of samples in the evalua-
opment dataset. The scores produced byR@& matcher tion data set, per class, andg is an evidence vector con-
are denoted a%s,. The two face matchers were chosen be-aining either scores alone, or scores and quality measures.
cause they both operate on very different features. The locdlhe combinations of scores and quality measures used in
DCT moa features encode mostly high spacial frequencieghe reported experiments are given in Table 1. If the esti-
while the projection of the face images on PEAsubspace mates ofP(wle;j) are accurate, then on average taken over
emphasizes lower spacial frequencies. a sufficiently large data set, treepriori estimates of error

In the experiments reported here we used two face improbabilities of individual classifier decisions must account
age quality measures - a normalized two-dimensional crosger the actual error rateER, observeda posteriori This
correlation coefficient with an average face template, denotebtion,referred to aaccountability criterionfor estimating
asgmsy, and a probabilistic quality measure which evalu-error prediction accuracy [13], can be expressed in terms of
ates how well do the used classification models account fod = ER—R. The values oER R andd are reported per
the observed data. This quality measure is based on thdass, and as a total average. The results of the experiments
DCTmoc classification features, and denotedyjag,. For  are givenin Table 1.
details on these quality measures the reader is referred to The baseline classifier error rates are given by evidence
[10]. combinations: = [Xs1], € = [X;2] ande = [X;1,Xs2]. The re-

The experiments reported here were conducted using sults gathered in Table 1 clearly show that quality measures
classifier ensemble shown in Figure 2. A Bayesian classiean be effectively used for improving the classification per-
fier with GMM class models was deployed as the stackeformance inQ — stackarchitecture, as shown in Figure 2,
classifier. Sample evidence distributions and decision hypewith respect to the baseline classifier results. For all evidence
surfaces created by stacked classifiers are shown in Figucenfigurations, the proposed error prediction method worked
5. The estimates of posterior probabilities of the stackedvell and accurately predicted observed error rates with er-

w
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Quality measure amg,
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(@) e = [xf1,qmyq]

(b) e = [xf2,qmy2]

Figure 5: Classification in the evidence space: sample distributions and stacked classifiers for face matching, Biosec database
using (2)DCT and (b)PCAbaseline classifiers and corresponding quality measures.

rors given by the correspondiny The values of are at [6]
least one order of magnitude smaller than the predicted error
rates.

[7]

6. CONCLUSIONS

In this paper we have presented arguments against the com-
monly encountered, intuitive interpretation of quality mea-
sures as performance predictors in biometric classification.
We have proposed an alternative, rigorous view on the role[8]
of quality measures in biometric classification and error pre-
diction, in which the quality measures are conditionally rel-
evant class predictors. We have proposed an error prediction
architecture based on a stacked classifier ensemble, where
Bayesian classifier returns posterior probabilities used as cre-
dences in single decisions’ correctness. We have instantiated
the proposed error prediction system using a face verifica-
tion example, using two different classifiers and two differenho]
guality measures.
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