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ABSTRACT
In this work we propose a different approach to the problem
of estimating a transfer matrix with data aided, which can be
applied to SISO and SIMO channels, either baud-rate or frac-
tionally sampled signals. The approach is based on the Em-
pirical Likelihood method [1, 2], a flexible semi-parametric
estimation method, which can easily integrate in the estima-
tion procedure some prior informations on the structure of
the parameter of interest. Moreover, this improved estima-
tion method does not assume any model for the data distri-
bution. The contributions of this paper is twofold: first, we
introduce the Empirical Likelihood method in a general con-
text, i.e. without any prior informations and then, we derive
closed-form expressions of estimators for the transfer matrix.
All results are presented under Gaussian assumptions and un-
der a mixture of Gaussian and Student-t distributions. This
allows to show the robustness of the proposed method.

1. INTRODUCTION

The main objective of a communication system is to allow
information to be properly exchanged between a transmitter
and a receiver that are interconnected by a channel. As a
rule, this communication channel will introduce distortions
(intersymbol interference, noise, etc.) that are usually com-
pensated for using an equalizer, whose design often needs an
accurate estimator of the channel [3].

Traditionally, a training sequence is used to aid the chan-
nel estimation task. This emitted known sequence makes the
identification of the channel feasible since both the input and
the output signals are known during the transmission of the
training sequence. Note that most of the propagation chan-
nel estimators are derived under the hypothesis of an additive
Gaussian noise model. With the resultant propagation chan-
nel coefficients, several linear and nonlinear methods can be
used to estimate the emitted symbols [3].

In this work we propose a different approach to the prob-
lem, which can be applied to SISO and SIMO channels, ei-
ther baud-rate or fractionally sampled signals. The approach
is based on the empirical likelihood [1, 2], a flexible semi-
parametric estimation method, which can easily incorporate
a priori knowledge about the problem at hand.

In order to expose the proposed technique, this paper is
organized as follows. Section 2 presents the problem of in-
terest. In Section 3 some background on the EL procedure is
provided. The section 4 details the introduction of prior on

the transfer matrix. Section 5 presents the simulation results,
followed by the concluding remarks in Section 6.

2. PROBLEM FORMULATION

2.1 Mathematical notation

In the following, boldface letters (respectively capital letters)
denote column vectors (resp. matrices), H denotes the con-
jugate transpose operator, T denotes the transpose operator,
E[·] stands for the expectation of a random variable, EP[·] is
the expectation under the data probability P. C (resp. R) de-
notes the set of complex (resp. real) numbers, while for any
integer p, Cp (resp. Rp) represents the set of p-vectors with
complex (resp. real) elements. For z ∈ C, we write Re(z)
and I m(z) its real and imaginary parts.

2.2 Signal Model

The proposed signal model is the same as in [4]. Consider a
SIMO channel, modeled by a set of L finite response filters
(FIR) of length M + 1, each one composed of a set of taps
h(i)

k , k = 0, . . . ,M, i = 0, . . . ,L− 1 and a transmitted signal
composed of a finite sequence of symbols sk. The received
signal x(i)

k from the i-th subchannel is then given by

x(i)
k =

M

∑
l=0

h(i)
k sl−k +n(i)

k , (1)

where n(i)
k denotes an additive white Gaussian noise of un-

known variance. The transmitted sequence sk is assumed to
be i.i.d, digitally modulated signal, and the channel impulse
response is supposed time-invariant during the observation
record. The data aided channel estimation task consists of
determining the set of coefficients h(i)

k based on a set of ob-

served samples x(i)
k and with the knowledge of the emitted

signal.

Let x(i)
k = [x(i)

k ,x(i)
k−1, · · · ,x

(i)
k−N+1]

T represent a vector
containing N samples of the i-th subchannel output. De-
noting by sk = [sk,sk−1, · · · ,sk−M−N ]T the vector containing
M + N transmitted symbols, it is possible to express x(i)

k as
follows:

x(i)
k = H(i)sk +n(i)

k , (2)
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where n(k) represents the vector of additive Gaussian noise,
and

H(i) =


h(i)

0 h(i)
1 · · · h(i)

M 0 · · · 0
0 h(i)

0 h(i)
1 · · · h(i)

M · · · 0
...

...
0 · · · 0 h(i)

0 h(i)
1 · · · h(i)

M

 (3)

denotes the convolution matrix related to the i-th subchannel.
Hence, stacking the received vectors x(i)

k into a single vector
xk, yields the following received signal model:

x(0)
k
...

x(L−1)
k


︸ ︷︷ ︸

xk

=

 H(0)

...
H(L−1)


︸ ︷︷ ︸

H

sk +


n(0)

k
...

n(L−1)
k


︸ ︷︷ ︸

nk

(4)

The following section is devoted to the estimation of the
transfer matrix H. First, we introduce an improved estima-
tion procedure, the Empirical Likelihood and then, we esti-
mate H with prior informations on its structure since H is a
Sylvester matrix.

3. EMPIRICAL LIKELIHOOD

The Empirical Likelihood method is a recent semi-
parametric method [5] designed for estimation problems in
which the parameter of interest H is defined as the solution
of an estimating equation.

The covariance matrix estimation problem, that we con-
sider in this paper, can be formulated in such a way:

EP0

[
xsH −H

]
= 0. (5)

where 0 denotes the null vector with appropriate dimension
(n = NL× [N + M− 1] here) since the signal s is a random
vector containing 1 or −1 and such that E[ssH ] = I. Let
us recall that NL is the dimension of the observations x
and N + M− 1 the dimension of the signal s. Notice that
the expectation is taken under the true Probability Density
Function P0 of x which is assumed to be unknown. This is
an important feature of the EL procedure which does not
require any assumptions on the data distribution. In most of
the time, the additive noise is assumed to be Gaussian.

In this paper, we only use the EL method to estimate the
transfer matrix H. Therefore, we will restrict ourselves to
built the corresponding Empirical Likelihood and to derive
its Maximum Empirical Likelihood (MEL) estimator.

3.1 Likelihood

In this section, we introduce EL methodology from the clas-
sical likelihood context. For that purpose, we consider the
family of multinomials G charging the data set as if it was
a parametric model for the data. Notice that this parametric
model assumption will never be made in our method, we just
made it to interpret EL as a classical likelihood. All the de-
tails and technical arguments are given in Owen’s book [5].

We define, for G and H verifying the moment condition
EG
[
xsH −H

]
= 0, the distribution

G(x) =
{

qk if ∃k, x = xk

0 otherwise ,
(6)

or equivalently,

G(x) =
K

∑
k=1

qk δxk(x) , (7)

where δx stands for the Dirac measure at element x,

0 < qk < 1 and
K

∑
k=1

qk = 1.

The corresponding likelihood, as if the data were dis-
tributed according to G, is called Empirical Likelihood:

EL(H) = EL(x1, · · · ,xK ,s1, · · · ,sK ,H) (8)

= sup
(qk)

{
K

∏
k=1

qk

∣∣∣∣∣ K

∑
k=1

qk
(
H−xksH

k
)

= 0,
K

∑
k=1

qk = 1

}
.

The main technical difficulty, evaluating the empirical
likelihood EL(H) at any given H, is resolved by a Lagrangian
method and EL(H) can be written in an easier form:

−2log(EL(H)) =

inf
λ

{
2

K

∑
k=1

log
(

K
(

1+λ
>vec

(
H−xksH

k
)))}

, (9)

because the optimal weights write

q∗k =
1
K

(
1+λ

∗>vec
(
H−xksH

k
))−1

, (10)

where λ ∗ is the optimal Lagrange multiplier and depends on
H and where the operator vec(·) reshapes a m×n matrix el-
ements into a mn column vector .

3.2 Maximum Empirical Likelihood without prior in-
formation
Now, ĤEL is defined as the argsup of EL(H) which is the
arginf of −2log(EL(H)) since −2log(.) is a decreasing
function :

ĤEL =

arg inf
H

(
inf
λ

{
2

K

∑
k=1

log
(

K
(

1+λ
>vec

(
H−xksH

k
)))})

.

(11)

If no restriction is assumed on the structure of H , the
Maximal Empirical Likelihood (MEL) estimator is given by
the following expression

ĤEL1 = xsH =
1
K

K

∑
k=1

xksH
k (12)

where the notation a is used for the empirical mean of the

vector a:
1
K

K

∑
k=1

ak.
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Notice that ĤEL1 is equal to the Maximum Likelihood (ML)
estimator under Gaussian assumption. This is the purpose of
the following proposition:

Proposition 3.1
Let (x1, . . . ,xK) an i.i.d. data set in Rp, with common dis-
tribution P0 and expectation θ 0 ∈ Rp and finite variance-
covariance matrix. Then the Maximal Empirical Likelihood
estimator of the expectation is given by

θ̂ MEL = x . (13)

where x denotes the empirical mean, x =
1
K

K

∑
k=1

xk .

Remark 3.1
This result is interesting since it provides an estimator of the
mean without any assumptions on the data distribution and
it corresponds to the Maximum Likelihood estimator under
Gaussian assumptions (and many others classical distribu-
tions).

Another important feature of the EL method is that prior
informations can be taken into account into the estimation
procedure. This is one of the two contribution of this paper.

3.3 Additional prior information
This explicit expression given by equation (12) for the esti-
mator can be obtained even when some restrictions are made
on the covariance matrix structure. The particular case of
Sylvester matrix will be considered in section 4. The estima-
tion scheme can take into account some prior information by
introducing an additional equation to equation (5) as follows:

EP0

[
vec(H−xsH)

c(prior)

]
=
(

0p2

0s

)
. (14)

where c(prior) is a vector resulting in a data transformation
which reflects the priors information and where p2 (resp. s)
is the size of vec(H−xsH) (resp. c(prior))

By rewriting equation (14) as

EP0

[
v
w

]
=
(

vec(H)
0

)
, (15)

where v = vec(xsH) , w = c(prior) and by setting, for the co-

variance matrix of the vector
(

v
w

)

Var
(

v
w

)
=
(

V11 V12
V21 V22

)
, (16)

one obtains the following closed-form expression for the
MEL estimator:

θ̂ MEL = v−V12V−1
22 w . (17)

This closed-form can only be obtained when priors informa-
tion can be written in terms of equation (14). This result has

been proved in [5], page 52. In practice, the empirical ver-
sions of V12 and V22 allow to obtain an approximation of the
MEL, without significant computational cost.

Notice that when there is no prior information, i.e. w = 0,
one obtains ĤEL1. This is also the case when w is uncorre-
lated with v because V12 is the null matrix.

4. APPLICATION TO SYLVESTER MATRIX
ESTIMATION

In this section, we use prior information on the transfer ma-
trix structure, defined in equation (4). This section is divided
in three steps:
• It is first assumed that H is a real matrix.
• Then, the full Sylvester structure of H is contained in

c(prior).
Notice that there already exist methods for structured

covariance matrix estimation in which the Toeplitz case is
treated, see e.g. [6, 7], but these methods are based on a
parametric model, usually the Gaussian one.

4.1 First prior information: H is real
A first step is to assume that H has real valued elements.
Therefore, the estimating equation is modified to take the
structure into account. For that purpose, we define the func-
tion m2 as

m2(x,s,H)=

Re
(

x j1sH
j2−h j1 j2

)
1≤ j1≤NL,1≤ j2≤M+L−1

I m
(

x j1sH
j2−h j1 j2

)
1≤ j1≤NL,1≤ j2≤M+L−1

 .

(18)
This leads to a new estimator ĤEL2 which integrates the

constraint on the real transfer matrix H. This writes

ĤEL2 = arg inf
(H,λ )

{
K

∑
k=1

log
(

1+λ
>m2(xk,sk,H)

)}
. (19)

4.2 Second prior information: H shares a Sylvester
structure with L×M non null elements
In this subsection, the unknown parameters of H are only L×
M real scalars: for i = 1, . . . ,L , h(i)

1 , . . . ,h(i)
M . To estimate H

by taking into account the prior informations, we will focus
on each Sylvester matrix H(i).

m3(x(i),s,H(i)) =
((

x(i)
j1 sH

j1+ j2−h(i)
j2

)
1≤ j1≤N, 0≤ j2≤M

)
(20)

This leads to the last estimator ĤEL3 of H, defined by

ĤEL3 =


Ĥ

(0)

...

Ĥ
(L−1)

 (21)

where

Ĥ
(i)

= arg inf
(H(i)

,λ )

{
K

∑
k=1

log
(

1+λ
>m3(x

(i)
k ,sk,H(i))

)}
.

(22)
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We can rewrite the constraint in terms of expectations
in order to obtain an explicit form of the estimator by
means of equation (17). For simplicity purpose, we give the
constraints for M = 2 and N = 2. Let

v = Re
(
x1sH

1 ,x1sH
2
)>

w =
(
I m

(
x1sH

1 ,x1sH
2
)
,x1sH

1 − x2sH
2 ,

x1sH
2 − x2sH

3 ,x1sH
3 ,x2sH

1
)>

(23)

Let us explain constraints containing in the vector w:
• The first elements allows to specify that h1 and h2 are real

scalars, thus their imaginary part is null.
• The two subtractions mean that the two diagonals of H

contains the same element, and thus the difference is null.
• Finally, last elements are the null elements of the transfer

matrix.
Equation (17) gives estimators for the first line of N:

(ĥ1, ĥ2)> = v−V12V−1
22 w (24)

The estimator Ĥ
(i)

writes then

Ĥ
(i)

=
[

ĥ1 ĥ2 0
0 ĥ1 ĥ2

]
(25)

Remark 4.1
One can give a general expression for all these estimators:

ĤEL j =
K

∑
k=1

q∗k( j)xksH
k ,

where the q∗k( j) depend on the constraints. For example, in
the case of no constraint (i.e. ĤEL1), the q∗k(1) are all equal to
K−1. This corresponds to the ML estimator under Gaussian
assumptions.

These theoretical estimators of H will be studied in the
section 5 thanks to simulations on their Mean Square Error
(MSE) under Gaussian and non-Gaussian assumptions.

5. SIMULATIONS

In order to enlighten results provided in sections 3 and 4,
some simulation results are presented. We focus on the
problem of transfer matrix estimation in the case of an
additive Gaussian or non-Gaussian noise.

In order to compare all estimators, we will plot the Mean
Square Error (MSE) in different realistic situations. The
MSE used in this section is the following criterion:

MSE(Ĥ,H) = E

[
‖Ĥ−H‖
‖H‖

]
,

where ‖.‖ stands for the Frobenius norm and Ĥ denotes the
studied estimator of H.

The transfer matrix H which has to be estimated shares a
Sylvester structure and is defined as follows:

H =

 H(0)

...
H(L−1)

 , (26)

where

H(i) =


h(i)

0 h(i)
1 · · · h(i)

M 0 · · · 0
0 h(i)

0 h(i)
1 · · · h(i)

M · · · 0
...

...
0 · · · 0 h(i)

0 h(i)
1 · · · h(i)

M

 . (27)

In the simulations, the number L of response filters is L =
4, the length M + 1 of each response filter is M + 1 = 5 and
the number of samples is N = 10. Thus, the matrix H has
N×L lines and M+N−1 columns. Moreover, the number K
of xk and sk is K = 200. The transfer matrix H to be estimated
is defined thanks to the following response filter:
• h(1) = [−0.049;0.482;−0.556;1;−0.171],
• h(2) = [0.443;1;0.921;0.189;−0.087],
• h(3) = [−0.211;−0.199;1;−0.284;0.136],
• h(4) = [0.417;1;0.873;0.285;−0.049].

To evaluate performance of our method, we will compare
the three following estimators of H:
• The well-known Sample Covariance Matrix which corre-

sponds to the ML estimator under Gaussian assumptions
and defined as follows

ĤML =
1
K

K

∑
k=1

xksH
k .

ĤML is used as a benchmark but it is not appropriate to
our problem since it does not take into account the struc-
ture of the real covariance matrix. Notice that this ML
estimator is the same as ĤEL1 which is the MEL estima-
tor without any prior informations.

• Then, we plot ĤEL2 which is the MEL estimator in the
case of a real transfer matrix H. ĤEL2 is defined by equa-
tion (19).

• Finally, we plot ĤEL3, the MEL estimator which uses all
prior information on the structure. ĤEL3 is defined by
equation (25).
Concerning the EL method, notations of section 4

are still valid: ĤEL1, ĤEL2 and ĤEL3. Notice that both
ĤEL2 and ĤEL3 are analytically derived thanks to equation
17. Matrices V12 and V22 are replaced by their empirical
versions. Finally, for ĤEL3, v and w are given by equation
23 and for ĤEL2, v and w are straightforward.

We first studied the behavior of the proposed method in a
Gaussian context and then in a non-Gaussian context.

5.1 Gaussian distribution
Figure 1 shows the MSE of each estimator versus the Signal-
to-Noise Ratio under Gaussian assumptions, i.e. the additive
noise bk is Gaussian distributed.
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Classical Likelihood on H = EL1
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Figure 1: MSE against the Signal-to-Noise Ratio, under
Gaussian assumptions, for L = 4, M = 5, N = 10 and SNR =
−17dB.

5.2 Mixture of Student-t and Gaussian distributions
For k = 1, . . . ,K ,

bk ∼
(1−α)C T +α C N (0,I)√

(1−α)2 +α2

where C T is a complex Student-t distribution with degree of
freedom 2.1, which has been centered and normalized while
C N is the classical complex Gaussian distribution.

The set of parameters in this subsection is p = 3, K = 100
and ρ = 0.5 .

5.3 Simulations comments
A first comment is that, as expected, the MSE decreases
as the estimators make use of more prior informations.
On each graphic, the estimator EL1 that does not use any
prior on the structure has MSE higher than the MSE of the
estimators that make use of the structure informations (EL2
and EL3). These comments are still valid under Gaussian
and non-Gaussian assumptions.

Then, we consider the figure 1 which deals with Gaussian
distribution. One can see that all estimators have an MSE
which decreases as the SNR increases. It is also interesting
to notice that the difference between all curves is the same
for all SNRs. Moreover, for small SNRs (i.e., for negative
SNRs), the MSEs have high values. This can be explained by
the fact that the additive noise corrupt the estimation process.

On figure 2, one can notice the improvement introduced
by the proposed method in comparison with the classical ML
method which degrades for small values of α , i.e. for highly
non-Gaussian noise and for a SNR of -17dB.

6. CONCLUSION

This contribution presents an Empirical Likelihood based ap-
proach for the identification of multichannel FIR filters in
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Classical Likelihood on H = EL1
EL2
EL3: with all constraints

Figure 2: MSE against α , for a mixture of Student-t and
Gaussian distributions, for L = 4, M = 5 and N = 10.

data aided context. The Empirical Likelihood is a flexible
semi-parametric estimation method, which can easily inte-
grate in the estimation procedure some prior informations on
the structure of the parameter of interest. Moreover, this im-
proved estimation method does not assume any model for the
data distribution. The numerical simulation evidence that the
proposed method yield reasonable estimates of the channel
coefficients even in non-Gaussian additive noise.
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