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ABSTRACT 

In various applications from radar processing to mobile 

communication systems based on CDMA for instance, M-AR 

multichannel processes are often considered and may be 

combined with Kalman filtering. However, the estimations of 

the M-AR parameter matrices and the covariance matrices of 

the additive noise and the driving process from noisy obser-

vations are key issues to be addressed. In this paper, we pro-

pose to solve this problem as an errors-in-variables problem. 

Thus, the noisy observation autocorrelation matrix compen-

sated by a specific diagonal block matrix and whose kernel is 

defined by the M-AR parameters matrices must be positive 

semi-definite. Hence, the parameter estimation consists of 

searching every diagonal block matrix that satisfies this 

property, of reiterating this search for a higher model order 

and then of extracting the solution that belongs to both sets. 

The proposed algorithm outperforms existing methods, espe-

cially for low signal-to-noise ratio and when the variances of 

the additive noise are not necessarily the same on each 

channel. 

1. INTRODUCTION 

Linear-model based approaches are very popular in various 

applications such as speech processing and biomedical. When 

dealing with scalar AutoRegressive (AR) process, the key 

issue is usually the selection of the model order and the esti-

mations of the AR parameters from noisy observations. In-

deed, to reduce the bias on the AR parameter estimation due 

to the additive measurement noise, one solution consists of 

using instrumental variable techniques such as the modified 

Yule-Walker (MYW) equations or mutually-interactive opti-

mal filter based solutions [10]. Another approach is the 

‘noise-compensated’ Yule-Walker equations which however 

require the estimation of the additive-noise variance [9]. To 

solve this dual estimation problem, several off-line ap-

proaches have been proposed1 by Davila [5], Zheng [16], etc. 

In [6], Diversi et al. suggest viewing this joint estimation as 

an errors-in-variables issue. In theory, this solution has the 

advantage of blindly providing the AR parameters, the model 

order and the variances of the driving process and the additive 

noise. This method aims at studying the semi-definite posi-

tiveness of specific observation correlation matrices by using 

the so-called Frisch scheme
2
 [2]. Meanwhile, we have ana-

lysed the relevance of the method for optimal filter-based 

speech enhancement using a single microphone [3]. 

Although scalar AR modelling is often used in various cases, 

a p
th order M-AR multichannel process ( )nx  is more suited 

when dealing with simultaneous processing of multiple corre-

lated data channels. It is defined as follows: 
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 are the  MM ×  AR parameter matrices 

and ( )nu  is a 1×M  zero-mean white noise vector whose 

correlation matrix is denoted uΣ  and satisfies: 
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It should be noted that the AR parameter matrices 
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 are constrained such that the roots of: 

 0)(det =zAp  (3) 

                                                           
1 The reader is referred to [3] and [10] to have more information 

about the various methods that have been proposed to estimate the 

AR parameters from noisy observations. 
2 The Frisch scheme will be recalled in section 2. 
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lie inside the unit circle in the z-plane, where: 
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with MI  the MM ×  identity matrix and 1−z  the backward 

shift operator. 

Such arrays of signals are common in seismic data process-

ing, in radar and sonar processing, mobile communication 

systems, etc. 

• In radar processing based on antenna arrays, the Space-

Time Adaptive Processing (STAP) algorithm, which 
makes it possible to weaken the influence of the additive 

measurement noise, the clutter and the jamming signals to 

determine the presence of a target, provides significant re-

sults especially for slowly moving targets [1]. However 

the corresponding computation cost is high. To reduce it, 

options known as the Parametric Adaptive Matched Filter 

(PAMF) and the Space-Time Auto-Regressive Filter 

(STAR) consist of modelling the clutter and the interfer-

ence of various range/azimuth cells as a M-AR process 

[14]. 

• In mobile communication systems based on CDMA for 
instance, the fading-channel processes can be estimated or 

predicted by using a Kalman algorithm for instance and 

by modelling the channels by a M-AR multichannel proc-

ess [4] [11]. 

In the above applications, the estimations of the M-AR matri-

ces and the noise covariance matrices from noisy observations 
are key problems to be addressed, but few papers really deal 

with this issue. When noise-free observations are available, 

the multichannel Yule-Walker equation, its fast version  

-namely the multichannel Levinson algorithm-, and alterna-

tive such as the Nuttall-Strand method [12] can be used to 

estimate the M-AR parameter matrices. A Maximum Likeli-
hood (ML) estimation has been also proposed by Pham et al. 

[13]. More recently, Schlögl [15] points out the relevance of 

the Nuttall-Strand method by carrying out a comparative 

study between standard approaches and the so-called “Algo-

rithm 808-ARfit” proposed by Schneider and Neumaier (See 

[15] for more details about the references). 
However, when the multichannel process is disturbed by an 

additive white noise, the estimation of the M-AR parameter 

matrices becomes biased [12]. In [8], Hasan presents an itera-

tive approach which alternately estimates the noise variances 

on each channel by means of the Newton–Raphson gradient 
search technique and the M-AR parameter matrices by solv-

ing the corresponding noise-compensated Yule-Walker 

equation. Nevertheless, this method is no longer reliable 

when the signal-to-noise ratio (SNR) becomes low. 

In this paper, a new application of errors-in-variables ap-

proach based on the Frisch scheme [6] is presented. To esti-

mate the M-AR parameter matrices, the noisy observation 

autocorrelation matrix compensated by a specific diagonal 

block matrix must be semi-definite positive. The algorithm 

consists of: 

• searching every diagonal block matrix that satisfies this 

property, 

• reiterating this search for a higher model order, 

• extracting the solution that belongs to both sets. 

It extends to the M-AR process case the method presented in 

[3] for the scalar AR process. It should be noted that, like 

Hasan’s approach [8], the variances of the additive noise are 

not necessarily equal on each channel. In addition, our ap-

proach in theory also provides the M-AR model order and the 

covariance matrix of the driving process. As we will see, the 

proposed algorithm outperforms Hasan’s method [8], in prac-

tical case especially for low SNR. 

The remainder of the paper is organized as follows. In section 

2, the estimation approach is detailed. In section 3, to illus-
trate the relevance of our approach, we carry out comparative 

study with existing approaches such as [8], the multichannel 

Yule-Walker equation and the Nutall-Strand method. 

2. PROBLEM STATEMENT 

2.1 General case 

Let the M-AR process ( )nx  be disturbed by an additive zero-

mean white noise vector ( )nb  uncorrelated with ( )nu  and 

with correlation matrix ])([ 2

,

2

1, Mbbb diag σσ �=Σ . 

 ( ) ( ) ( )nbnxny +=  (5) 

The purpose of our method is to estimate the M-AR parame-

ter matrices and the autocorrelation matrix uΣ  and bΣ  from 

the autocorrelation matrix of ( )ny . Indeed, (1) can be rewrit-

ten as follows: 
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or equivalently in a matrix form: 
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where 
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Thus, one has: 
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with 
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or equivalently: 

 ( ) ( )
])00([

11

, �����
�

Mp

u

p

x

p

ux diagRR Σ−= ++  (11) 

Due to (9), 
( )1
,

+p
uxR  is positive semi-definite and the M-AR 

parameter matrices span the kernel of ( )1
,

+p
uxR . 

However, in practical case, 
( )1
,

+p
uxR  is not directly available 

and only the positive definite autocorrelation matrix of the 

noisy observations 
( )1+p
yR  can be considered. It satisfies: 
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p
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p
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Combining (11) and (12) leads to the semi-definite positive-

ness property of the following matrix: 
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Therefore, searching for the autocorrelation matrix uΣ  and 

bΣ  consists of finding the matrices that make 
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definite. At that stage, the M-AR parameter matrices can be 

obtained by solving the noise-compensated Yule Walker equa-

tion. 

2.2 Formulation with two channels 

In the following, let us assume that 2=M  for the sake of 

clarity and simplicity. In that case, property  (13) only de-

pends on 
2
1,

2
2,

2
1, ,, buu σσσ  and 

2
2,bσ . The idea is then to re-

trieve the values 2
1

2
2

2
1 ,, αββ  and 2

2α  that makes the noise 

compensated matrix positive semi-definite. 
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For the order p , the locus of admissible points that satisfy 

the above condition is a hypersurface denoted by ( ))( 1+p
yRS  

and whose concavity faces the origin )0,0,0,0(O  in the 

orthant of 4R . When increasing the order to q , another set 

( ))( q
yRS , with pq > , can be obtained. 

In theory, the solution we search belong to both sets. In prac-

tical case, however, no common point exist and criteria have 

to be considered like those proposed in the very last years in 

the area. For more information, the reader is referred to [2], 

[3] and [6]. 

In this paper, two criteria are presented and lead to two algo-

rithms explained in the next paragraphs. 

Remark: a point of 
( ))( 1+p
yRS  can be expressed [7] as fol-

lows: 

Let ( )4321 ,,, εεεεε =  in the orthant of 4R  and r  a 

straight line from the origin through the point ε . Its intersec-

tion with 
( ))( 1+p
yRS  is defined by the point P . Therefore, 

→
OP  and 

→
εO  are collinear, i.e. one has: 

 ( ) ( )
λ

εεεε
ααββ 43212

1
2
1

2
2

2
1

,,,
,,, =  (15) 

where λ  is largest eigenvalue of the matrix 
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2.3 Algorithm 1 

1/ Start with a generic point ( )4321 ,,, εεεεε =  in the first 

orthant of 4R . 

2/ Determine the point Pp+1 ( )4321
1
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3/ Calculate the M-AR parameter matrices by solving the 

noise compensated Yule-Walker equation associated to 

the noise variances that define 1+pP . It gives 

)( 11 ++ pp Pθ . 

Calculate the criterion 
( )

( )

2

2

111

0

)(















×−

+++

MMpq

ppq
P

R
θ

 and mini-

mize the criterion by studying the locus of solutions de-

fining 
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2.3 Algorithm 2 
Given (1), the autocorrelation matrices of the noise free  

M-AR process and the noisy observations satisfy, for 

1+≥ pτ : 
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or equivalently where pq ≥ : 
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Therefore, a second criterion can be derived by looking for 

the points 1+pP  that minimizes: 
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In the next section, we propose to compare the relevance of 

both algorithms with Hasan’s method proposed in [8] and the 
standard multichannel Yule–Walker equations and the Nutall-

Strand method. 

3. SIMULATION RESULTS 

We have carried out various simulation tests. In this paper, let 

us consider a 2nd order ( 2=p ) two-channel ( 2=M ) AR 

process: 

 ( ) ( ) ( ) ( )nunxAnxAnx +−−−−= 21 )2()1(  (18) 

 ( ) ( ) ( )nbnxny +=  (19) 

where the AR coefficient matrices are those defined by 

Hasan in [8]: 










−−

−
=

24.088.0

32.071.0)1(A  and 








−−

−
=

30.049.0

15.057.0)2(A  

In addition, ( )nu  is the two-channel stationary Gaussian 

white noise, uncorrelated between channels and with unit 

variance on each channel. The additive noise ( )nb  is also a 

two-channel stationary Gaussian white noise, uncorrelated 

with ( )nu . 

Hence, various scenarios can be studied depending on the 

SNR on each channel. In the experiments below, 4000 data 

samples for each channel are first used. 

In addition, let us first consider that the SNR on the first and 

the second channel are respectively equal to 10 dB and 5dB, 

as suggested by Hasan in [8].  
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Figure 1 – True and estimated PSD of the two channels in the 1st test 

 

As pointed out in Fig 1, Hasan’s approach and ours make it 

possible to retrieve the true spectra of the AR process from 

noisy observations. For the sake of space, we do not present 

the estimated cross-PSD between channel 1 and 2 in the first 

test, but the methods provide similar results.  

 

When the SNR are lower, i.e. 5dB and 3dB for instance on the 

1
st
 and 2

nd
 channel respectively, our approach outperforms 

Hasan’s method. See fig. 2, 3. To confirm this result, Tables 1 

and 2 provide: 

1/ the mean square error (MSE) on the modulus of the 

roots of )(ˆdet zAp , based on 100 realizations. 

2/ the rate yinstabilitT  of realizations, for which an estimated 

root of )(ˆdet zAp  is outside the unit circle in the z-plane. 

To test the limit of our methods, the same tests are then car-

ried out with only 200 samples. See Table 3. 
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Figure 2 – True and estimated PSD of channel 1 in second test 

True PSD, Hasan and 

the two EIV methods 

Standard YW and 

Nutall-Strand methods 

Hasan method 

True PSD and the 

two EIV methods 

Standard YW and 

Nutall-Strand methods 

 

True PSD, Hasan and 

the two EIV methods 

Standard YW and 

Nutall-Strand methods 
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Figure 3 – True and estimated PSD of channel 2 in second test  

 

Estimated AR coefficients 
True AR 

coefficients 
Hasan 

method 

EIV 

(Algo 1) 

EIV 

(Algo 2) 
( )

71.0
1

11 −=a  -1.090 -0.780 -0.796 

( )
32.0

1
12 =a  -1.730 0.164 0.126 

( )
88.0

1
21 −=a  -1.216 -0.798 -0.777 

( )
24.0

1
22 −=a  -1.282 -0.169 -0.155 

( )
57.0

2
11 =a  2.609 0.733 0.774 

( )
15.0

2
12 −=a  1.004 -0.102 -0.086 

( )
49.0

2
21 −=a  0.610 -0.504 -0.521 

( )
30.0

2
22 −=a  0.146 -0.264 -0.248 

Table 1: Comparison of estimated AR coefficients 

MSE of 

absolute value 

)10(
3−  

Hasan 
method 

 

EIV 
(Algo 1) 

 

EIV 
(Algo 2) 

 

Pole 1 29.111 14.488 14.864 

Pole 2 24.216 5.911 16.392 

Pole 3 0.309 0.117 0.140 

Pole 4 0.345 0.117 0.201 

yinstabilitT  19% 0% 0% 

Table 2: MSE of the modulus of the roots of   

)(det zAp  with 4000 samples 

MSE of 
absolute value 

)10( 3−  

Hasan 
method 

 

EIV 
(Algo 1) 

 

EIV 
(Algo 2) 

 

Pole 1 691.0 82.8 67.8 

Pole 2 612.7 36.4 42.2 

Pole 3 367.2 3.2 2.2 

Pole 4 368.8 3.2 2.2 

yinstabilitT  24% 0% 0% 

Table 3: MSE of the modulus of the roots of 

)(det zAp  with 200 samples 

4. CONCLUSIONS AND PERSPECTIVES 

We have proposed a new method to blindly estimate the  

M-AR parameter matrices and the covariance matrices of the 

additive noise and the driving process from noisy observa-

tions. Our method is reliable for a SNR higher or equal to 

3dB on each channel and with a number of data samples lar-

ger than 200. To reduce the computational cost, a recursive 

approach could be developed. We are currently analysing its 

relevance in radar processing. 
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