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ABSTRACT
In this paper, interlaced sampling is discussed, for which sig-
nals/images are sampled several times by an identical sam-
pling device like a CCD camera with slightly displaced lo-
cations. Since offset parameters are unknown, the problem
becomes challenging. A typical example of this formulation
is super-resolution image reconstruction from multiple low
resolution images. A well-defined solution has already been
devised for the case where the number of unknown param-
eters is less than or equal to the number of measurements.
However, this condition easily fails in practical situations.
Hence, this paper proposes a signal reconstruction method
that provides stable solutions even if the condition does not
hold. The key factors introduced here are a statistical as-
sumption for target signals and the minimization of a cost
function. Simulation results show that the proposed method
performs much better than the conventional method.

1. INTRODUCTION

Sampling is the problem of reconstructing a target signal f
from its sampled measurements {dn}. By assuming that f
belongs to a certain Hilbert space H, the measurements {dn}
are modeled by the inner product as

dn = 〈 f ,ψn〉, (1)

where {ψn} are sampling functions. The signal is recon-
structed by a linear combination of reconstruction functions
{ϕk} as

f̃ (x) = ∑
k

ckϕk(x). (2)

In the classical formulations, the sampling functions {ψn}
and reconstruction functions {ϕk} were assumed to be fixed
[1], [2], [3].

In contrast to them, recent discussions assume that {ψn}
and {ϕk} involve unknown parameters, and thus are not fixed
functions. For example, Vetterli et al. discuss problems
in which locations of reconstruction functions are unknown
[4],[5],[6]. They introduced the notion of rate of innovation,
and provide perfect reconstruction formulas for signals with
finite rate of innovation. A similar discussion is about sam-
pling signals from union of subspaces [7].
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Figure 1: Interlaced sampling (x(1)
n = xn +δ (1))

Table 1: Relation of the present paper to other works.

Prior Information
Use Not use

(Parameters)≤(Samples) [9]
(Parameters) > (Samples) This paper [10]

On the other hand, the present paper discusses a sampling
problem with unknown parameters in sampling functions. A
signal is sampled by a sampling device several times with
slightly displaced locations as shown in Fig. 1. This type
of sampling is called interlaced sampling [8]. A typical ex-
ample of this formulation is super-resolution from multiple
low-resolution images.

Several solutions to this problem have been proposed so
far. Vandewalle et al. devised a method for perfect recon-
struction under a condition such that the number of unknown
parameters is less than or equal to that of measurements
[9]. In practical applications, however, there are many un-
known parameters, and the condition does not hold in gen-
eral. Browning proposed a method for signal reconstruction
with unknown sample locations [10]. This method, how-
ever, does not provide good reconstruction results as shown
in simulations later. Marziliano et al. discussed a problem
of sampling discrete-time bandlimited signals with unknown
locations [11]. However, this is not an interlaced sampling
problem with unknown arbitrary real offsets.

Hence, in this paper, we propose a signal reconstruction
method that provides a stable, high quality solution from in-
terlaced samples with unknown offsets. To this end, we adopt
a stochastic formulation, and introduce a generalized Wiener
criterion. The proposed algorithm obtains a signal that min-
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imizes the criterion among signals satisfying the given sam-
ples. For fixed offset parameters, the optimization problem
has an analytical solution. After deriving the solution, we
further minimize the criterion with respect to the offset pa-
rameters. Since this step can not be solved analytically, we
use an algorithm based on an exhaustive search over a finite
set of candidate parameters. Note that we use a mean signal
as a priori knowledge. Even though it is not easy to know
this information exactly, we do not need correlation operator
nor probability density function.

This paper is organized as follows. Section 2 formulates
the interlaced sampling problem. Section 3 briefly reviews
conventional approaches to the problem. In Section 4, we
propose a signal reconstruction algorithm based on the gen-
eralized Wiener criterion. Section 5 shows simulation results
which illustrate the effectiveness of the proposed method.
Section 6 concludes the paper.

2. INTERLACED SAMPLING

A signal f to be reconstructed is defined on a continuous
domain D . We assume that f belongs to a Hilbert space
H = H(D) of a finite dimension K. The inner product for
f and g in H is denoted by 〈 f ,g〉, and the norm is induced
as ‖ f‖ =

√
〈 f , f 〉. By using an arbitrarily fixed orthonormal

basis {ϕk}K−1
k=0 , any f in H is expressed as

f =
K−1

∑
k=0

akϕk. (3)

A K-dimensional vector with k-th element ak is denoted by
a. A (conjugate) reconstruction operator A∗

r maps a into f as

f = A∗
ra. (4)

A signal f is sampled J times by an observation de-
vice with displacements {δ ( j)}J−1

j=0 , where δ (0) = 0. A J-
dimensional vector with j-th element δ ( j) is denoted by δ .
The observation device is characterized by sampling func-
tions {ψn}N−1

n=0 . Then, the sampling function for the n-th sam-
ple in the j-th series is given by

ψ( j)
n (x) = ψn(x−δ ( j)), (5)

and the sample is expressed as

d( j)
n = 〈 f ,ψ( j)

n 〉. (6)

A JN-dimensional vector with n + jN-th element d( j)
n is

d. An operator that maps f into d is As(δ ):

As(δ ) f = d. (7)

A JN×K matrix with the n+ jN, k-th element 〈ϕk,ψ
( j)
n 〉

is denoted by Bδ . Since As(δ )A∗
r = Bδ , substituting Eq. (4)

into Eq. (7) yields
Bδa = d. (8)

Fig. 2 shows relations between spaces and operators.
Interlaced sampling is a problem of obtaining the perfect

reconstruction or an optimum approximation under some cri-
terion from samples {{d( j)

n }N−1
n=0 }

J−1
j=0 . If the offset parame-

ters {δ ( j)}J−1
j=1 are known, the interlaced sampling is a linear
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Figure 2: Spaces and operators

problem, and many solutions have already been derived [8].
If the offset parameters are unknown, the problem becomes
nonlinear and challenging.

3. CONVENTIONAL APPROACHES

In order to reconstruct the signal f from interlaced samples
with unknown offsets, we have to determine both {ak}K−1

k=0
and {δ ( j)}J−1

j=1 . To this problem, two solutions have already
been proposed.

Vandewalle et al. proposed a perfect reconstruction al-
gorithm under a condition that the number of unknown pa-
rameters is less than or equal to the number of samples
{{d( j)

n }N−1
n=0 }

J−1
j=0 , or

K + J−1 ≤ JN. (9)

They proposed two algorithms, one of which is called the
projection method. Let us briefly review the method.

Let {ε( j)}J−1
j=0 be parameters used for estimation of

{δ ( j)}J−1
j=0 , where ε(0) = 0. A J-dimensional vector with j-th

element ε( j) is ε . A matrix obtained by replacing δ in Bδ
by ε is denoted by Bε . The range and the Moore-Penrose
generalized inverse of Bε are denoted by R(Bε) and B†

ε , re-
spectively. The sample vector d belongs to R(Bε) if ε = δ ,
but not otherwise. Hence, the algorithm obtains ε that mini-
mizes the distance between d and its projection onto R(Bε),
which is computed by ‖d−Bε B†

εd‖. If the condition (9) does
not hold, however, R(Bε) can be the entire space CJN . Then,
‖d−Bε B†

εd‖ becomes 0 irrespective of ε , and the minimiza-
tion does not have any meaning.

Browning also proposed a method for signal approxima-
tion from samples at unknown locations [10]. It is inter-
esting that the method is an extension of the algorithm pro-
posed by Vandewalle et al. This method reconstructs a sig-
nal in a subspace {ϕk}L−1

k=0 , where L < K. Then, the distance
‖d−Bε B†

εd‖ does not become zero generally. Hence, this
method is applicable even if the condition (9) does not hold.
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However, as shown in the simulations later, ε that minimizes
the criterion can be far from the true value δ . A good approx-
imation is not reconstructed, either. Hence, in this paper, we
propose a method that provides a stable and high quality so-
lution even if the condition (9) does not hold.

4. OPTIMUM APPROXIMATION
RECONSTRUCTION

In order to solve the problem of interlaced sampling with un-
known offset parameters, we introduce the following Wiener
like criterion:

Jorg[ f̃ ] = E
f
‖T ( f̃ − f )‖2, (10)

where E f stands for expectation for { f} and T is a pre-
determined operator that maps f into a certain feature space.
Typically, T is an identity operator or some derivative oper-
ator. It is well-known that Eq. (10) is expressed as the bias-
variance decomposition:

Jorg[ f̃ ] = ‖T ( f̃ − f̄ )‖2 +E
f
‖T ( f̄ − f )‖2, (11)

where f̄ is the mean of f :

f̄ = E
f

f . (12)

Note that the second term in Eq. (11) is a constant with re-
spect to f̃ . Hence, we can ignore the term. Further, since
we assume noiseless samples in this paper, Eq. (7) should be
satisfied. Thus, we consider the following problem.

Problem 1 Determine a vector ε that minimizes

Jmin[ε] = J[ f̃ε ] = ‖T ( f̃ε − f̄ )‖2, (13)

where f̃ε stands for the signal f that minimizes

J[ f̃ ] = ‖T ( f̃ − f̄ )‖2 (14)

subject to
As(ε) f̃ = d (15)

for an arbitrarily fixed ε .

Let {ck}K−1
k=0 be coefficients of f̃ with respect to the or-

thonormal basis {ϕk}K−1
k=0 : ck = 〈 f̃ ,ϕk〉. Then, f̃ is expressed

as

f̃ =
K−1

∑
k=0

ckϕk = A∗
rc, (16)

where c is a K-dimensional vector with k-th element ck. By
using this expression, Problem 1 is restated in the following
vector-matrix form.

Problem 2 Determine a vector ε that minimizes

Jmin[ε] = J[cε ] = ‖T (A∗
rcε − f̄ )‖2, (17)

where cε stands for the vector c that minimizes

J[c] = ‖T (A∗
rc− f̄ )‖2 (18)

subject to
Bεc = d (19)

for an arbitrarily fixed ε .

The a priori knowledge in Problems 1 and 2 is the mean
signal f̄ . Having access to such an information is not an easy
problem. But, we do not need any further information such
as the correlation operator, the covariance operator, or the
probability density function of f . From now on, we solve
Problem 2.

Since the problem for a fixed ε is a constrained quadra-
ture optimization problem, it is analytically solvable. We first
express the solution. Let Pε and Qε be matrices defined by

Pε = I −B†
ε Bε , (20)

Qε = TA∗
r Pε , (21)

where I is the K-dimensional identity matrix. Further, wε is
a vector given by

wε = T f̄ −TA∗
r B†

εd. (22)

Theorem 1 For an arbitrarily fixed ε , if d ∈ R(Bε), cε in
Problem 2 is given by

cε = B†
εd+Q†

εwε +(Pε −Q†
ε Qε)u, (23)

where u is an arbitrary K-dimensional vector. The minimum
value Jmin[ε] is

Jmin[ε] = ‖(I −Qε Q†
ε)wε‖2. (24)

(Proof) Since the condition d ∈ R(Bε) is true, c that sat-
isfies Eq. (19) is expressed as

c = B†
εd+Pεv, (25)

where v is an arbitrary K-dimensional vector. Substituting
Eq. (25) into Eq. (18) yields

J[c] = ‖Qεv−wε‖2

= ‖Qεv−Qε Q†
εwε‖2 +‖(I −Qε Q†

ε)wε‖2

≥ ‖(I −Qε Q†
ε)wε‖2,

where we used Eqs. (21) and (22). The equality holds if and
only if

Qεv = Qε Q†
εwε . (26)

This equation is true, for example, for v = Q†
εwε . Hence,

the minimum value is given by Eq. (24) indeed. All vectors
v that satisfies Eq. (26) is given by

v = Q†
εwε +(I −Q†

ε Qε)u. (27)

Since Pε Q†
ε = Q†

ε , substituting Eq. (27) into Eq. (25) yields
Eq. (23).

Since an arbitrary vector u exists in Eq. (23), there are in-
finitely many vector cε . However, the minimum value Jmin[ε]
is unique as shown in Eq. (24). Further, under the following
condition, cε also becomes unique.

Corollary 1 The vector cε in Eq. (23) is unique if and only
if

R(T ∗)+R(As(ε)∗) = H. (28)

In this case, cε is given by

cε = B†
εd+Q†

εwε . (29)
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(Proof) Assume that Eq. (28) holds. Applying Ar to both
sides from the left yields

R(ArT ∗)+R(Pε)⊥ = CK , (30)

where we used ArAs(ε)∗ = B∗
ε and R(B∗

ε) = R(Pε)⊥. Fur-
ther, applying Pε to both sides from the left yields

R(Q∗
ε) = R(Pε). (31)

Hence, we have Q†
ε Qε = Pε , which implies that cε in Eq. (23)

becomes unique and reduces to Eq. (29).
Conversely, assume that cε in Eq. (23) is unique. Then, it

follows that Q†
ε Qε = Pε and Eq. (31) holds. Hence, we have

Eq. (30) and it follows that

R(ArT ∗)+R(ArAs(ε)∗) = CK . (32)

Since R(A†
r ) = H and A†

r Ar is the identity operator, applying
A†

r to both sides from the left to Eq. (32) yields Eq. (28).
For example, if T is the identity operator, then R(T ∗) =

H and Eq. (28) is true irrespective of As(ε). Hence, cε be-
comes unique as in Eq. (29).

Theorem 1 implies that the solution to Problem 2 is
obtained by minimizing Jmin[ε ] in Eq. (24) with respect
to ε . Since there are Moore-Penrose generalized inverses
in Eq. (24), we can not analytically compute the gradient.
Hence, we can not use optimization techniques such as the
steepest descent method. Therefore, we solve the optimiza-
tion problem by using the following algorithm based on an
exhaustive search over a finite set of candidate parameters.

Algorithm 1 Before start, determine the candidate for each
parameter ε( j) ( j = 1, ...,J−1).
1. Initialize Jmin as infinity.
2. Repeat the following steps for all candidate vectors ε .

(a) If d ∈ R(Bε), calculate Jmin[ε] by Eq. (24).
(b) Otherwise, set infinity to Jmin[ε].
(c) If Jmin[ε ] < Jmin, then update Jmin.

The condition d ∈ R(Bε) is verified by evaluating the
value ‖d−Bε B†

εd‖. If this is small enough, then we regard
the condition true.

5. SIMULATION

Let H be a space spanned by functions

ϕk(x) =

{
1 (k = 0),
√

2cos
kπx

l
(0 < k < K),

(33)

where l is a positive real number. The inner product is de-
fined by

〈 f ,g〉 =
1
l

∫ l

0
f (x)g(x)dx. (34)

Under this inner product, {ϕk}K−1
k=0 is an orthonormal basis

indeed. Hence, we can use the discussion in the previous
sections. In this space H, the target signal f is generated
by a normal distribution with a fixed signal f̄ as mean and a
variance of 0.5.

We adopted two operators for T . One is the identity op-
erator: T = I. In this case, Eq. (10) reduces to the original
Wiener criterion. The second one is the second derivative
operator: T = d2/dx2. In this case, T ϕk = (−k2π2/l2)ϕk,
which implies that ϕk is the eigenfunction of T .

The sample points {xn}N−1
n=0 for the base sequence are

given by

xn =
(2n+1)l

2N
(n = 0,1, . . . ,N −1). (35)

For simplicity, let l = N. Then, the sampling interval reduces
to one. The number of sampling sequences is J = 3, and
the offset parameters are δ (1) = −0.2 and δ (2) = 0.3. The
dimension of H is K = 20, and the number of sample points
in each sequence is N = 6. Sampling is assumed to be ideal,
i.e., d( j)

n = f (xn +δ ( j)). It should be noted that the condition
(9) does not hold.

Fig. 3 shows simulation results. Figures (a) ∼ (c) show
reconstructed signals by the proposed method with T = I,
the proposed method with T = d2/dx2, and the conventional
method [10], respectively. In the conventional method, we
used L = 16, because it is the maximum number that satisfies
the condition (9) in the case of J = 3 and N = 6. In all fig-
ures, the thick solid, the thin solid, and the dotted lines show
the reconstructed signal f̃ , the target signal f , and the mean
signal f̄ , respectively. The estimated results for the param-
eters δ and the normalized error ‖ f̃ − f‖/‖ f‖ are shown in
Table 2. The proposed methods outperform the conventional
method in the sense of both the parameter estimation and the
normalized error. It should be noted that the reconstructed
signals in (a) or (b) are closer to the target signal than to the
mean signal. Further, the proposed method with T = I per-
forms better than that with T = d2/dx2. This shows that,
in this experiment, suppression for some special frequency
components did not work effectively. Hence, we have to use
appropriate T depending on a practical situation.

The computational complexity of Algorithm 1 exponen-
tially increases in terms of J. If the candidate of each ε( j)

is −0.5,−0.4, . . . ,0.5, then the main routine will be repeated
11(J−1) times. With J = 5, the routine spend more than one
day. This is a problem even though Algorithm 1 does not
suffer from the issue of local minima. In order to solve this
problem, we have to devise a more sophisticated optimiza-
tion algorithm. One possibility is based on the coarse-to-fine
strategy. Another one is to compute the gradient of Jmin[ε]
approximately. For example, let J = 3. We first set ε as a
zero vector (0,0,0) and compute Jmin[ε] for this ε . Then,
compute Jmin[ε] for ε = (0,0.1,0), (0,−0.1,0), (0,0,0.1),
and (0,0,−0.1). The ε which minimizes Jmin[ε] within these
five values is the next candidate. This algorithm will reduce
computational complexity dramatically compared to Algo-
rithm 1. However, this may be trapped in local minima.

Table 2: Estimation results of δ and normalized error of f̃
δ ‖ f̃ − f‖/‖ f‖

True value (-0.20, 0.30) –
Proposed with T = I (-0.16, 0.30) 0.28

Proposed with T = d2/dx2 (-0.17, 0.40) 0.40
Conventional [10] ( 0.30, -0.10) 1.74
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6. CONCLUSION

We proposed a stochastic signal reconstruction algorithm
that provides a stable, high quality approximation from in-
terlaced samples with unknown offset parameters. We in-
troduced a generalized Wiener criterion. The proposed al-
gorithm yields a signal that minimizes the criterion among
signals consistent with the given samples. We derived an
analytical solution for the optimization problem with fixed
offset parameters. Then, the minimum value of the criterion
for a fixed offset was further minimized with respect to all
candidate offset parameters. Simulation results showed that
the proposed method outperforms the conventional method
in the sense of both the parameter estimation and the signal
reconstruction. Our future work is to devise a more sophisti-
cated optimization algorithm.
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Figure 3: Simulation results

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP


