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ABSTRACT

Pathological or physiological state of the muscle can be
assessed from the velocity of propagation of surface action
potentials (conduction velocity - CV). The estimation of
CV from surface electromyography (sEMG) implies an
estimation of time delay between signals detected by two
or more sensors along the muscle length. In this paper
we investigate the possible use of a parameter estimation
approach to follow changes of CV over time. The recursive
least square algorithm was used. The error on estimation
of CV was quantified in the case of Gaussian white noise
(GWN) and band-limited signals. On this second type of
signal, a decimation and a whitening filter were used to
increase the robustness of the algorithm in case of additive
noise. The results indicate that the frequency bandwidth
substantially affects performance. The best performance was
reached with GWN. For band-limited signals, the decimation
processing followed by whitening substantially increasedthe
quality of the estimation.

1. INTRODUCTION

Estimation of time delay between two or more signals
is of interest in many applications such as sonar,
radar, speech, seismology or electrophysiology. In
surface electromyography (sEMG), methods for time delay
estimation are used to measure muscle fiber conduction
velocity (CV), which is the velocity of propagation of
the action potentials. This physiological parameter is an
indicator of the status of the muscle during a dynamic or
isometric contraction [4, 5]; for example the changes in CV
over time are one of the manifestations of muscle fatigue.

Estimation of CV from sEMG recording is a complex
task. It requires signal acquisition with advanced systems
and the analysis of signals corrupted by noise. For signal
detection, the most common sensors comprise arrays of
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multiple electrodes [8, 11], however two detection points are
sufficient for estimating CV.

Many methods for the estimation of a constant delay have
been previously proposed [12, 6]. Generally no scaling and
no deformation factors are introduced in the model and the
delay is supposed to be constant within the time window of
analysis. The simplified model is expressed as:

xk(t) = s(t − (k−1)θ)+wk(t) (1)

wheres is the signal measured onK channels asxk(t). In
this model, θ is a constant time delay between adjacent
channels,wk(t) is an independent identically distributed
Gaussian White Noise (GWN) andk is the channel number.

Previous methods of estimation of the time delay
assumed signal stationarity, which is an assumption not
met in many applications, such as during fast dynamic
contractions. In a previous study [10], we proposed to follow
the CV changes over time by the use of time-frequency
representations. However, the proposed method was based
on the phase difference between recorded signals, which is
very sensitive to additive noise.

Chan et al. [2] proposed a parametric approach to create
and estimate fractional delay that could change over time. To
estimate the delay, the estimated coefficients of a recursive
least square (RLS) algorithm was used. This time delay
parameters estimation (TDPE) algorithm permits to track
delay changes over time, with a very limited window size
and relative robustness to additive noise. However, the
performance worsen if the analyzed signals are not white.
The signal model of white noise, adopted in [2] is clearly
not appropriate for sEMG signals. We thus propose a pre-
processing step which consist in decimation and whitening.
The decimation is necessary to avoid excessive increase of
additive noise by the whitening procedure.

The paper is organized as follows. The methods used
to create test signals are presented in section 2. Section 3
describes the TDPE methods. Section 4 presents the results.
Finally, conclusions are drawn in section 5.
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2. SIGNAL DEFINITION AND TIME DELAY
MODELING

In this study, we used the sampled version of the temporal
model depicted in equation 1 with two noisy channels in
which the constant delayθ was replaced by a time-varying
delay θ(n), with n being the sample index of the sampled
data:

x1(n) = s(n)+w1(n)
x2(n) = s(n−θ(n))+w2(n)

(2)

2.1 Signal definition

TDPE performs well on GWN signals but its performance
worsens substantially when applied to band-limited signals.
To evaluate and compare the performance of the TDPE
algorithm on sEMG signals, we used three test signal
models:
1. GWN signal: frequency bandwidth from 0 to Fs/2 with a

normalized power spectrum;
2. filtered GWN: GWN signals obtained after low-pass

Butterworth filtering (order 1, Fc = Fs/4) of a GWN
signal as in [1];

3. simulated sEMG signal: as presented in [10], we create
sEMG signals with a sEMG model presented in [3] with
a low frequency (fl ) equal to 60Hzand a high frequency
( fh) equal to 120Hz.

The power spectral shape of this three signals is depicted
on the 2 for comparison.

In order to evaluate the applicability of the TDPE
algorithm in presence of noise, we used infinite, 20 dB and
10 dB values for the signal to noise ratio (SNR). SNR was

defined as 10log( σ2(s(n))
σ2(wk(n))

), wherek was equal to 1 or 2,
depending of the channel andσ was the standard deviation.
w1(n) andw2(n) were independent noises.

2.2 Modeling time-varying delay

To produce a constant fractional delay, the phase information
of the Fourier transform of a signal can be used. However,
this processing is more complex and less efficient in case of
time-varying delays. To simulate local changes of the delay
over time, the sinus cardinal interpolation can be applied
with a parametric approach [2]. Numerical application of
this delay variation processing is expressed as:

x̃2(n) =
p−1

∑
i=−p

sinc(θ(n)+ i)s(n− i) (3)

where n is the sample number and ˜x2(n) is the delayed
version ofx1(n) (in the noise-free case), andθ(n) is the delay
at time instantn.

The summation is made on the 2p coefficients of a finite
order filter (thesinc function) leading to an approximation
x̃2(n) of x2(n). In our simulations, p was fixed to 20 samples.

2.3 Conduction velocity modeling

CV(n) is the ratio between the inter-electrode distance (∆e)
and the delayθ(n) between electrodes. In the TDPE
estimation algorithm, the delay is expressed in samples. In
this case, the CV at time instantn can be rewritten as:

CV(n) = Fs
∆e

θ(n)
(4)

whereFs is the sampling frequency.
To evaluate the performances of the TDPE algorithm on

positive and negative gradients of the delay, a sinusoidal
function was used. Considering the physiological variations
of CV, we chose physiological values comprised between 2
to 6 m.s−1. Time duration was 5s leading to a maximum
acceleration of 1.26m.s−2.

3. ESTIMATION METHODS

We are looking for the delay filter that compensates the
delay between the channels. TheWk(n) filter coefficients
have a sinc function impulse response. The delay is
obtained by searching the maximum of the crosscorrelation
function evaluated between the first channel and the second
compensated channel, for each sample instantn. Assuming
GWN properties, the crosscorrelation function writes [1]:

R(n,τ) =
p

∑
k=−p

Wk(n)sinc(τ −k) (5)

whereWk(n) is a set of 2p+ 1 coefficients andk is the
coefficients index. This procedure leads to the convolution
of Wk(n) coefficients with asinc function. The aim is to
estimate eachWk(n) along the timen with an adaptative
filter (AF) structure. An AF is a system that uses an
optimization function to self-adjust its transfer function. In
the case of RLS algorithms, the input and output signals
are used to update the filter coefficients at each instant of
time. AF structures can be used in many applications to
extract informations in noise (Wiener filter) or to predict new
informations (Kalman filter). In our application, we used the
RLS algorithm to estimate time varying coefficients of the
delay filterWk(n) [2].

3.1 Basic tool

For TDPE estimation, the time delay is given by the formula:

θ(n) = argmax
τ

{R(n,τ)} (6)

RLS algorithm is used in AF to find coefficients
vector W(n) = [w−p(n) ... w0(n) ... wp(n)] that relates to
recursively producing the least square error of the signal
(loop structure depicted on figure 1).

Figure 1: Recursive least square block diagram

Using the block diagram of the RLS algorithm filter
presented in Figure 1, we can summarize the RLS algorithm

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



as:

XT
1 (n) = [x1(n+2p) x1(n+2p−1) ... x1(n)]

α(n) = x2(n+ p)−WT(n−1)X1(n)

g(n) = P(n−1)X1(n)(λ +XT
1 (n)P(n−1)X1(n))

P(n) = λ−1P(n−1)−g(n)XT
1 (n)λ−1P(n−1)

W(n) = W(n−1)+α(n)g(n) (7)

Wheren is the sample number andn ∈ [p N− p], N
is the number of samples in the signalsx1 and x2, X1(n)
is a vector of 2p+ 1 values ofx1, α(n) is the predictive
error based on the true valuex2(n + p) and its estimate
x̂2(n + p), g(n) is the gain vector,P(n) is a matrix of
(2p+ 1)-by-(2p+ 1) values and corresponds to the inverse
of the autocorrelation function ofx1 andW(n) is the filter
vector of 2p+ 1 coefficients andλ is the forgetting factor
defined between 0 and 1. A small value ofλ makes the
algorithm more reactive and more sensitive to delay changes;
a value close to 1 induces estimation inertia making resulting
in slower tracking of changes. A good trade-off for CV
estimation is in the range[0.9 1[.

3.2 Whitening and decimation processing

Classical RLS approaches for delay estimation use GWN
or slightly non-GWN signals [1, 13] whereas they do not
perform well for band-limited signals. Basically, we solved
this problem by a whitening operation on the original
signal with an AR-Yule filter. Results from this first
processing scenario were evaluated in part 4. Unfortunately,
the whitening reinforced the power at frequencies outside
the bandwidth of interest (10-500Hz), thus unnecessarily
amplifying the additive noise. To decrease this negative
effect, a decimation operation was performed by keeping one
point over two. This decimation processing is equivalent
to dividing the sampling frequency by two. To prevent
aliasing, a low-pass filtering operation (Butterworth filter,
0− 500Hz, order 4) was performed before the decimation
process. Results from this second processing scenario were
evaluated in part 4.

4. RESULTS

In this section, results of the noise impact on the delay
estimation of the signals introduced in section 2.1 are
presented. An example of the simulated sinusoidal CV
function with the corresponding estimate is presented in
Figure 3. Bias and standard deviation of the CV estimation
error were numerically calculated for each run. To suppress
outliers due to the initial algorithm convergence, the first100
estimates were not used in the analysis.

Monte-Carlo simulations with 100 independent runs
were performed for each SNR value. For all simulations, the
parameters were:p = 12, Fs = 2048Hz and ∆e = 5 mm.
Thus, the theoretical analysis windows had a duration of
12.2 ms. However, this duration doubled with decimation.
A vector of 2p + 1 zeros was used to initialize the filter
coefficients andP(0) was an identity matrix. Impact of the
forgetting factor was estimated forλ ∈ [0.95 1[ at SNR =
20dB.

Autoregressive model parameters using Yule-Walker
method was used for the whitening operation with order 20.

Whitening was performed on the signalsx1 andx2 before the
TDPE algorithm.
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Figure 2: Continuous spectral shape of the signals used for
the test. ForPsEMG( f ), fl = 60 Hz and fh = 120Hz. For
PGWN Hal f BAnd, the cutoff frequencyf0 was fixed to 500Hz.

Figure 3: Results of a delay estimation. 100 tests (in blue)
were superposed on the theoretical delay function in red
color. Tests were carried out on noise-free sEMG signals.

Results of the delay estimation forλ = 0.98 are presented
in Figure 5. The first sub-plot titledGWN Full Band was the
reference (ideal case for the TDPE algorithm). The estimated
error in this case was larger than in the results presented
in [1], which was due to the use of a time-varying delay
instead of constant delay as in [1].

Figure 5 presents also the TDPE results for the first
scenario (subfigure titlesGWN Half Band Whitening and
Simulate sEMG Whitening) and for the second scenario
(subfigure titlesGWN Half Band Whitening Decimation
andSimulate sEMG Whitening Decimation).

For all subfigures, bias values were insignificant with
respect to the standard deviation values.

Results on theGWN Full Band andGWN Half Band
underlined that the bandwidth had an important effect on
performance (standard deviation of the error was about five
time worse).

In noise free environment (SNR = In f ), the whitening
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Figure 5: Results of the CV estimation forλ = 0.98.
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Figure 4: CV estimation error for different values ofλ
at SNR = 20 dB for theSimulate sEMG Whitening
Decimationcase (senario number 2)

process is efficient (standard deviation was 0.006 sample for
the reference vs 0.007 sample). The results obtained on
GWN Half Band signals, after the whitening forSNR =
In f were similar to those from noise-freeGWN Full Band
signals.

As predicted, in noisy environments, whitening
process did not improve performances because SNR
locally worsened for the high frequency half-band.
So, in noisy environments, the decimation processing
showed improvements between the caseGWN Half Band
Whitening and GWN Half Band Whitening Decimation

case. The sample error standard deviation was divided by
about a factor two.

For free noise environments, similar results were found
for all the Simulate sEMG case in comparison with the
GWN Half Band case. The standard deviation error evolved
from 0.02 sample(data without processing) to 0.007 sample
(with whitening processing) and end to 0.02 sample (with
decimation processing added). So, the withening process
improved estimation quality. On the other hand, the
decimation process worsened the results because of the lost
of information induced by the subsampling.

In the case of noisy environment, results obtained for the
Simulate sEMGcase about ten times dramatically worsened
the standard deviation in comparison with theGWN Half
Band case. This can be explained by the bad influence of the
noise according to the spectral shape 2.

The impact of the parameterλ on the CV is analyzed
in Figure 4 forSNR = 20 dB. Results were evaluated for
the best scenario (Simulate sEMG Whitening Decimation
case). Largeλ values reduced the variance of estimation,
however the convergence time increased. For smallλ values,
the convergence time decreased but the variability increased.
A good trade-off was reached forλ ∈ [0.98 1[.

5. CONCLUSION

The aim of this article was the study of the performance of
the well known RLS algorithm in the case of time-varying
delay estimation of band-limited signals, such as sEMG
signals. Good results were obtained for noise-free GWN
signals, however the performance substantially worsened
when noise was introduced and the bandwidth was limited.
Whitening the recordings was efficient without additive
noise but did not improve the performance in case of noisy
recordings. With the addition of a decimation processing
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before whitening, the whitening was performed only on the
bandwidth of interest and performance improved in all cases.

The CV estimation was obtained from only 2 signals. A
possible further improvement of the method may consist in a
multi-channel approach [8].

Finally, the TDPE algorithm is based on an interpolation
function estimation (6) (which is based on the autocorrelation
function [2][eq. 15]). Other strategies for the interpolation
function should be further explored.
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EUSIPCO 2007, Pòznan, Poland, pp. 2499-2503, 2007.

[11] P. Madeleine, F. Leclerc, L. Arendt-Nielsen, P.
Ravier and D. Farina, “Experimental muscle pain

changes the spatial distribution of upper trapezius
muscle activity during sustained contraction”,Clinical
Neurophysiology, vol. 117, pp. 2436-2445, 2006.

[12] T. Müller, M. Lauk, M. Reinhard, A. Hetzel, C. H.
Lücking and J. Timmer, “Estimation of delay times in
biological systems”,Annals of Biomedical Engineering,
vol. 31, pp. 1423-1439, 2003.

[13] H.C. So, “On time delay estimation using an FIR
Filter”, Signal Processing, vol. 81, pp. 1777-1782, 2001.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP


	 Introduction
	 Signal definition and time delay modeling
	 Signal definition
	 Modeling time-varying delay
	 Conduction velocity modeling

	 Estimation methods
	 Basic tool
	 Whitening and decimation processing

	 Results
	 Conclusion

