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ABSTRACT
Adaptive subband structures have been proposed with the ob-
jective of increasing the convergence speed and/or reducing
the computational complexity of adaptation algorithms for
applications which require a large number of adaptive co-
efficients. In this paper we propose a blind source separa-
tion method for convolutive mixtures which employs a real-
coefficient non-uniform filter bank and a new normalization
scheme for the adaptation algorithm. Since the separation
filters in the subbands work at reduced sampling rates, the
proposed method presents smaller computational complex-
ity and faster convergence rate when compared to the corre-
sponding fullband algorithm.

1. INTRODUCTION

Blind source separation (BSS) techniques have been exten-
sively investigated in the last decade, allowing the extraction
of the signal of a desired source sq(n) from mixed signals
of more than one source xp(n) without any other knowledge
of the original sources, such as their positions or spectral
contents, nor of the mixing process. Examples of applica-
tions of BSS are speech enhancement/recognition (cocktail
party problem) and digital communication, among others.
The mixtures can be classified as linear or non-linear and in-
stantaneous or convolutive. This paper considers convolutive
mixtures of speech signals, which takes into account the re-
verberation in echoic ambients. In such cases, typically finite
impulse response (FIR) separation filters of large orders are
required, making the separation task very complex. In order
to solve such problem, several time-domain and frequency-
domain methods based on independent component analysis
(ICA) have been proposed in the literature.

Some of these solutions employ FIR separation filters and
estimate their coefficients with an ICA algorithm directly
in the time-domain. In real applications, the separation fil-
ters have thousands of coefficients and, therefore, such al-
gorithms present large computational complexity, slow con-
vergence and undesired whitening effect in the sources esti-
mations [1, 2]. In order to ease such difficulties, frequency-
domain BSS methods were proposed, where the convolutions
become products, and the convolutivemixtures can be treated
as instantaneous mixtures in each frequency bin [3, 4]. The
disadvantages of such methods are the scaling and permuta-
tion problems among the bins, besides the need of using long
windows of data for implementing high-order filters. Due
to the non-stationarity of the speech signals and mixing sys-
tems, the estimates of the needed statistics for each bin might

not be correct for long window data. Such disadvantages can
degrade severely the performance of the frequency-domain
algorithms. There are also techniques which combine the
time and frequency domain solutions to improve the BSS
performance and reduce its computational complexity [5]. In
this scenery, subband methods have been proposed mainly
due to their characteristics of breaking the high-order sepa-
ration filters into independent smaller-order filters and of al-
lowing the reduction of the sampling rate. Such methods usu-
ally employ complex-coefficients oversampled uniform filter
banks [6].

In this paper we propose a subband BSS method which
employs real-coefficients oversampled non-uniform filter
banks and reduced order separation FIR filters. The coeffi-
cients of the subband separation filters are adjusted indepen-
dently by a time-domain adaptation algorithm [1], which em-
ploys second-order statistics and a new gradient normaliza-
tion scheme. The proposed normalization scheme results in
faster convergence and reduced complexity when compared
to the original normalization scheme. The proposed structure
employs multirate processing, with smaller sampling rates at
the lower frequency bands, where the speech signal energy
is larger. Another advantage of the proposed algorithm is
the use of real-coefficients filters, which is attractive for DSP
implementations.

In Section 2 the BSS problem for linear convolutive mix-
tures is presented. In Section 3 the fullband time-domain
method proposed in [1], as well as a new gradient normaliza-
tion scheme, are presented. The proposed non-uniform sub-
band structure is described in Section 4. Section 5 presents
experimental results, comparing the performance of the full-
band and subband BSS algorithms. In Section 6 the conclud-
ing remarks are presented.

2. BSS FOR CONVOLUTIVE MIXTURES

In teleconference systems, the original sources are speech
signals and the convolutive mixtures of the sources are
caused by the auditorium reverberation. Fig. 1 illustrates a
blind source separation system, where the number of sources
is equal to the number of microphones. Considering that the
unknown mixture system can be modeled by a set of finite
impulse response (FIR) filters of length U (convolutive lin-
ear mixtures), the signals captured by the microphones xp(n)
can be written as

xp(n) =
P

∑
q=1

U−1

∑
k=0

gqp(k)sq(n− k) (1)
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Figure 1: Linear MIMO configuration for fullband BSS.

where gqp is the filter that models the echo path from the qth
source to the pth sensor, and P is the number of sources and
sensors (determined BSS).

In the BSS problem, the coefficients of the separation fil-
ters wpq (of length S) are estimated through an adaptive algo-
rithm, based on the independent component analysis (ICA)
technique, so that their output signals yq(n), given by

yq(n) =
P

∑
p=1

S−1

∑
k=0

wpq,kxp(n− k) for q = 1, . . . ,P (2)

become mutually independent.

3. BLOCK TIME-DOMAIN BSS ALGORITHM

For colored and non-stationary signals, such as speech sig-
nals, the BSS problem can be solved diagonalizing the output
correlation matrix considering multiple blocks in different
time instants (TDD - Time-Delayed Decorrelation). In this
section we review the wideband solution based on second
order statistics proposed in [1], that explores three caracter-
istics of the source signals simultaneously: nongaussianity,
nonwhiteness, and nonstationarity.

In the generic block time-domain BSS algorithm, defin-
ing N as the block size and D as the number of blocks which
are used in the correlation estimates (1 ≤ D ≤ S), the output
vectors of block index m are given by

yq(m) = [yq(mS),yq(mS+1), . . . ,yq(mS+N−1)]T (3)

and the N×D matrices Yq(m) containing D subsequent out-
put vectors can be expressed as [1]

Yq(m) =
P

∑
p=1

Xp(m)Wpq, (4)

with

Xp(m) =
[
X̂

T
p (m),X̂T

p (m−1)
]
, (5)

X̂
T
p (m)=

⎡
⎢⎢⎣

xp(mS) · · · xp(mS−S+1)
xp(mS+1) · · · xp(mS−S+2)

...
. . .

...
xp(mS+N−1) · · · xp((m−1)S+N)

⎤
⎥⎥⎦. (6)

The matrix Wpq is a 2S×D Sylvester-type matrix defined as

Wpq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wpq,0 0 · · · 0

wpq,1 wpq,0
. . .

...
... wpq,1

. . . 0

wpq,S−1
...

. . . wpq,0

0 wpq,S−1
. . . wpq,1

...
. . .

. . .
...

0 . . . 0 wpq,S−1
0 . . . 0 0
... · · ·

...
...

0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Combining all channels, Eq. (4) can be expressed concisely
as

Y(m) = X(m)W, (8)

where
Y(m) = [Y1(m), . . . ,YP(m)] , (9)

X(m) = [X1(m), . . . ,XP(m)] , (10)

W =

⎡
⎣W11 . . . W1P

...
. . .

...
WP1 . . . WPP

⎤
⎦ . (11)

The above matrices have dimensions N ×PD, N × 2SP and
2SP×PD, respectively.

In the matrix formulation, the BSS cost function is given
by:

ℑ =
b

∑
i=1

1
b
{log(det(bdiag(YT (i)Y(i))))

−log(det(YT (i)Y(i)))}, (12)

where b is the number of blocks considered in the optimiza-
tion and bdiag(A) is the operator which zeroes all the subma-
trices which are not located in the main diagonal of matrix A.

Applying the natural gradient method to the cost function
of Eq. (12), we get

∇GN
W ℑ(m) =

2
b

b

∑
i=1

W{Ryy(m)−bdiag(Ryy(m))}

×{
bdiag(Ryy(m))

}−1
, (13)

where

Ryy(m) = YH(m)Y(m) (14)

is a matrix of dimension PD×PD.
The batch-type off-line algorithm for adjusting the co-

efficients of the separation filters, considering a TITO (two
sources and two sensors) system, is given by

W(i)=W(i−1)−2μ
b

b

∑
m=1

[
W12R21R−1

11 W11R12R−1
22

W22R21R−1
11 W21R12R−1

22

]
(15)

where Rpq, of dimension D×D , is a sub matrix of Ryy (Eq.
(14)), i is the number of the iteration (off-line), and μ is the
step-size of the adaptation algorithm.
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Figure 2: Linear TITO configuration for subband BSS.

Due to redundancies in Wpq (Eq. (7)) and for conver-
gence reasons [1], we update at each iteration only the first
S elements of the first-column of this matrix (which are suf-
ficient to form a Sylvester-type matrix). In order to reduce
the computational complexity of the algorithm, the normal-
ization factor R−1

qq (m) can be simplified considering Rqq(m)
a diagonal matrix [7], that is,

Rqq(m) ≈ diag{Rqq(m)} = σ2
Yq

(m). (16)

In this way, its inverse can be obtained by inverting each ele-
ment of its diagonal.

With the objective of further reducing the computational
cost, we propose to simplify the normalization factor consid-
ering it a scalar. In such case,

Rqq(m) ≈ yT
q (m)yq(m)I (17)

with yq(m) given in Eq. (3), where its inverse is obtained in-
verting the power of a single block of the output signal yq(n).

4. SUBBAND BSS METHOD

In this section we investigate the use of a subband structure
in conjunction with the block time-domain BSS algorithm
presented in the last section. The idea is to exploit the char-
acteristics of better convergence rate and reduced computa-
tional complexity of such structures. In [6], a uniform sub-
band structure was used in the BSS algorithm. In this paper,
we propose to use a non-uniform subband structure, based
on [8], which employs an octave-band frequency decompo-
sition which results in narrower bands for low frequencies,
where the speech signals have most of their energy.

Figure 2 shows a TITO system with subband BSS consid-
ering an M-channel non-uniform filter banks. This structure
is a modified version of that of [8], where the input signals of
the separation filters of each subband wk

pq are down-sampled

by half of the critical decimation factor in order to reduce
the aliasing effects during the adaptation process. The dec-
imation of the signals at the outputs of the separation filters
by 2 restores the critical downsampling rate, before the out-
put signal reconstruction. For M-channel octave-band filter
banks, the decimation factors are L0 = 2M−1 and Lk = 2M−k

for k = 1, · · · ,M−1, and the equivalent analysis filters are

H0(z) =
M−2

∏
j=0

H0, j(z2 j
),

Hk(z) = H1,M−1−k(z2M−1−k
)

M−k−2

∏
j=0

H0, j(z2 j
), (18)

where H0, j(z) and H1, j(z) are the lowpass and high-pass fil-
ters, respectively, of the jth stage of the tree structure, and
are designed to produce perfect reconstruction (PR) [9]. The
number of coefficients of each separation filter at the kth sub-
band should be at least [8]

Sk = 2

⌊
S−1+NFk

Lk

⌋
+1, (19)

where NFk is the order of the kth synthesis filter.
To adjust the coefficients of each separation subfilter, we

employ the algorithm of Eq. (15). The update equation for
the coefficients of the kth band is given by

Wk(i) =Wk(i−1)− 2
bk

bk

∑
m=1

[
Wk

12R
k
21R

k−1

11 Wk
11R

k
12R

k−1

22

Wk
22R

k
21R

k−1

11 Wk
21R

k
12R

k−1

22

]

×
[
μk

1I 0
0 μk

2I

]
(20)

where

Rk
pq(m) = YkH

p (m)Yk
q(m) (21)

and

Yk
q(m) =

⎡
⎢⎢⎢⎢⎣

yk
q(mSk) . . . yk

q(mSk −Dk +1)

yk
q(mSk +1)

. . . yk
q(mSk −Dk +2)

...
. . .

...
yk
q(mSk +Nk −1) . . . yk

q(mSk −Dk +Nk)

⎤
⎥⎥⎥⎥⎦ .

(22)
The above matrices have dimensions Dk×Dk (with 1≤Dk ≤
Sk) and Nk ×Dk (with Nk ≥ Dk) , respectively, bk is the num-
ber of blocks, Nk is the block size, μk is the kth band adap-
tation step-size, i is the (off-line) iteration number, and yk

q is
the qth output in subband k.

5. EXPERIMENTAL RESULTS

In all experiments, two speech signals (of 10s length) sam-
pled at Fs = 8kHz were used: a female English voice and a
male Portuguese voice. Such signals were convolved with
artificial impulse responses [10], obtained considering the
room of Fig. 3 of dimensions 3.55 m × 4.55 m × 2.5 m
(with reverberation time around 250 ms). Such impulse re-
sponses were truncated, considering only their first S sam-
ples. The distance between the two microphones was 5 cm
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Figure 4: SIR evolution for the two normalization schemes:
(a) NN and (b) ON.

and the sources were positioned at 1 m of distance from the
center point of the microphones, at directions of −500 and
450. The length of the separation filters was fixed at the same
value of the mixing filters (U = S). Both algorithms were im-
plemented in Matlab and ran on an Intel Core 2 Duo 2GHz
PC. We adopted, for performance evaluation, the signal to
interference ratio (SIR), defined as

SIR = 10log10

(
SIR1 +SIR2

2

)
(23)

where SIRi is the ratio of the power of the output signal yi
when only the source si is active and the power of the output
signal yi when only the source si is inactive.

5.1 Experiment 1

In this experiment we compare the performance of the
fullband algorithm with the two different normalization
schemes: old normalization (ON - Eq. (16)) and new nor-
malization (NN - Eq. (17)). Figure 4 shows the SIR evo-
lution considering mixture filters of different lengths: U =
64, 128 and 256. The adaptation step-size in all cases was
μ = 5×10−3, except for the old normalization withU = 256,
where we used μ = 10−3 for convergence reasons. Table 1

Table 1: Processing time in minutes.
S = U ON NN

64 31 18
128 77 32
256 253 80

Table 2: Non-uniform structure parameters for M = 4 and
U = S = 1024.

k Lk NHk Sk μk
1 μk

2
0 8 441 366 8.8×10−3 8×10−3

1 8 441 366 17.6×10−3 16×10−3

2 4 189 606 35.2×10−3 32×10−3

3 2 63 575 70.4×10−3 64×10−3

shows the processing time for the simulations of Fig. 4.
From Table 1 and Fig. 4, it can be observed that for

mixing filters of large lengths (corresponding to highly re-
verberant ambients) the new normalization scheme reduces
significantly the processing time and improves the conver-
gence speed of the fullband algorithm.

5.2 Experiment 2

In this experiment we compare the performances of the full-
band and subband algorithms with the normalization scheme
of Eq. (17). The non-uniform subband structure was imple-
mented using octave-band filter banks with M=4 subbands
and yielding perfect reconstruction. Table 2 presents the dec-
imation factors Lk, the orders of the analysis filters Hk(z)
(which are equal to the orders of the synthesis filters Fk(z)),
the orders of the separation filters Wk

pq(z), and the adaptation
step-sizes used in the subband simulations. For the fullband
algorithm, the adaptation step-size was the same as in Ex-
periment 1, except for U = 1024 where μ = 3× 10−3 was
used. These step-size values resulted in the fastest adapta-
tion convergence and were obtained experimentally. In order
to reduce the computational complexity without significant
degradation on the separation process, the orders of the sep-
aration filters of the high-frequency band (k = 3) were re-

duced, with respect to Eq. (19), to S3 = 2
⌊

S/2−1+NFk
Lk

⌋
+ 1.

Such reduction is possible due to the reverberation character-
istics at high frequencies.

Figure 5 shows the SIR evolution for the fullband algo-
rithm (Eq. (15)) and for the subband algorithm (Eq. (20)),
with the lengths of the mixture filters equal to U = 256, 512
and 1024. Table 3 contains the maximum SIR in fullband
and in each of the 4 bands of the non-uniform structure. Ta-
ble 4 shows the processing time for the simulations of Fig.
5. From these tables and Fig. 5, it can be observed that
as the order of the mixture system increases (more reverber-
ant rooms), the advantages of the subband structure over the
fullband structure become more evident, resulting in a signif-
icantly faster convergence rate and smaller processing time,
which can be further reduced by using parallel processing for
the subband implementation.

The behavior of the subband BSS algorithm in the high-
est frequency band (k = 3) was worse than in the other sub-
bands (due to the use of smaller length separation filters in
this band), causing a reduction in the final SIR. However,
in such frequency band, the power of the speech signals is
small and the audible results are considerably better for the
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Figure 5: SIR evolution for fullband and subband algorithms
with different mixing filters lengths: (a) U=256, (b) U=512,
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Table 3: Maximum SIR (in dB).
Mixing Filters SIR in each subband SIR

S = U k = 0 k = 1 k = 2 k = 3 −−
256 21.72 11.06 12.57 6.63 14.56
512 13.81 9.41 10.37 6.31 10.70
1024 12.40 8.73 9.39 6.44 9.92

subband structure.
Figure 6 shows the power spectra of the original sources

and of theirs estimates obtained with the fullband and sub-
band algorithms, for different lengths of the mixture filters.
These results show the robustness of the algorithms for the
source whitening problem and for the scaling of the output
signals. The permutation problem between the subband out-
puts did not appear in our experiments.

6. CONCLUSION

In this paper we propose a new subband blind source sep-
aration algorithm which employs non-uniform octave-band
filter banks to decompose the signals from the sensors. Sep-
arating filters, of different lengths and working at reduced
sampling rates, are applied to the subband signals. The adap-
tation is performed by a natural-gradient type algorithm, with
a new normalization scheme which results in reduced com-
putational cost. Computer simulations with speech signals
were presented, showing the advantages of the new normal-
ization scheme and of the subband structure with respect to
processing time, adaptation convergence rate and final signal
to noise interference ratio.
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