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ABSTRACT
The feasibility of lossless compression of encrypted images
has been recently demonstrated by relying on the analogy
with source coding with side information at the decoder.
However previous works only addressed the compression
of bilevel images, namely sparse black and white images,
with asymmetric probabilities of black and white pixels. In
this paper we investigate the possibility of compressing en-
crypted grey level and color images, by decomposing them
into bit-planes. A few approaches to exploit the spatial and
cross-plane correlation among pixels are discussed, as well
as the possibility of exploiting the correlation between color
bands. Some experimental results are shown to evaluate
the gap between the proposed solutions and the theoretically
achievable performance.

1. INTRODUCTION

In many practical scenarios multimedia contents need both
to be compressed and protected. Whereas the classical way
to compress and protect data requires that data are first com-
pressed end then encrypted, in some cases it may be desir-
able to operate the other way a round. This is the case, for
example of an encrypted content that is transmitted without
compression through the internet, but at a certain point needs
to be compressed in order to match the characteristics of the
transmission link. If the node is not trusted it may not be
provided with the encryption key, then compression of the
encrypted content is required. Though at first sight this seems
an impossible task, in [1] Johnson et al. showed that by re-
lying on the theory of source coding with side information
(SCSI) at the decoder, it is indeed possible to compress the
encrypted data, without supplying the key to the encoder and
obtaining in theory the same results that would have been
obtained by compressing the non-encrypted bitstream.

In addition to the theoretical analysis, Johnson et al.
[1, 2] propose a practical approach to the lossless compres-
sion of encrypted black and white images1. In this paper we
consider the extension of the work in [1, 2] to the case of
lossless compression of grey level and color images. As it
will be shown such an extension is not trivial, and several
practical problems need to be tackled with. In a nutshell,
we suggest to apply the bilevel algorithm by Johnson et al.
to the image bit planes, by taking care to exploit the spa-
tial correlation between pixels, and that between adjacent bit
planes. With regard to color images, the correlation between
different color bands is taken into account either by explic-
itly evaluating and exploiting the cross-band correlation or

1In [1] the lossy compression of an i.i.d. Gaussian sequence is also ana-
lyzed, however we focus only on the lossless case.

by first decorrelating the color bands and then applying the
grey level algorithm separately to the single image bands.

The performance of the proposed schemes are evaluated
experimentally on a few test images and compared with the
theoretically achievable compression rates.

2. CODING ENCRYPTED BLACK/WHITE IMAGES

In order to explain the principles that make the compression
of an encrypted image possible, let us consider two corre-
lated information sources X and Y . It is known that the rate
required to represent each source exactly is RX ≥ H(X) for
source X and RY ≥ H(Y ) for source Y , where H() is the
source entropy. At the same time, if the dependency between
X and Y is exploited by a joint encoder, the total rate is lower-
bounded by the joint entropy, i.e. Rtot ≥ H(X ,Y ). Slepian
and Wolf showed [3] that the same asymptotic rate can be
achieved by two separate encoders as long as the two coded
streams are decoded jointly. For instance Y could be coded
losslessly without knowledge of X while X could be coded
at rate H(X |Y ), and recovered at the receiver with vanish-
ing error probability. The trick is to use a joint decoder that
decodes X by relying on the side information Y previously
recovered. A similar result holds in the case of lossy coding
[4]. To illustrate how SCSI can be used to enable signal com-
pression directly in the encrypted domain, let Y be the secret
key used by the cryptosystem, and X the encrypted signal.
Let assume that the hypotheses behind the SCSI theory are
verified. An encoder that only has access to the encrypted
version of the signal can code it at the same rate obtainable
by a coder that can operate on the non-encrypted signal. To
recover the original signal, the decoder must have access to
the side information (the secret key). This is the case, for
example, of a distribution system where coding (or transcod-
ing) has to be performed at intermediate, non-trusted, nodes,
whereas decoding is performed by a trusted end-user.

In [1] Johnson et al. proposed a practical scheme (Fig. 1)
to compress an encrypted stream with performance close to
the theoretical results.

The image is scanned by rows and then encrypted by xor-
ing it with a unique pseudorandom Bernoulli (1/2) key. The
entropy of the encrypted stream conditioned to the key (the
side information) is equal to the entropy of the plain image.
If the percentage of black (white) pixels in the image is sig-
nificantly lower than 1/2, compression is possible even if the
encoder does not know the encryption key. By following the
Slepian-Wolf coding paradigm, the parity check matrix of a
linear channel code is applied to the encrypted stream whose
compression is obtained by storing the syndrome instead of
the bit plane itself. To be specific, if a code, characterized by
a parity check matrix of size (n−k)× n, is used to compress
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Figure 1: Scheme to compress encrypted images.

a stream of length n, a rate equal to (n−k)/n is obtained and
reconstruction is possible if (n−k)/n is greater than or equal
to the plain stream entropy. The decoder sees the key as a
noisy version of the encrypted stream obtained by transmit-
ting it over a binary symmetric channel and its goal is to find
the nearest codeword to the key among those having the re-
ceived syndrome. In order to approach the theoretical limit, a
capacity achieving channel code needs to be used. In [1] the
authors use LDPC codes (Low Density Parity Check codes)
[5, 6] which are known to be very closed to the capacity for a
BSC (Binary Symmetric Channel) and for which an efficient
decoding algorithm exists based on belief propagation (BP).

To operate, the decoder needs to know the key, the syn-
drome and the conditional probabilities of the encrypted
stream given the key. These probabilities are exploited by
a modified BP algorithm to recover the encrypted sequence.
Belief propagation is an iterative algorithm that converges
exactly over trees, and performs quite well over sparsely
loopy graphs, such as Tanner graphs representing LDPC
codes [7]. Belief propagation needs some adaptations to
work with non-null syndromes. Specifically each ith check
node update rule has to be modified to incorporate the knowl-
edge of the ith bit of the syndrome. The value of the key and
the correlation between the key and the encrypted stream are
used as a priori information to initialize the marginal distri-
butions of the data nodes.

In [2], Shonberg et al. the above principles are extended
so to take into account the spatial correlation of black and
white images. Specifically, the authors model the images like
Markov random fields and exploit the correlation between
adjacent pixels. In this paper we use a different approach
to exploit the spatial correlation, in addition we extend the
analysis to grey and color images.

3. GREY-SCALE IMAGE REPRESENTATION

The extension of the algorithm described in the previous sec-
tion to the case of grey level images is not trivial. Its di-
rect extension in fact would require the use of a multilevel
version of LDPC codes and the corresponding BP-based de-
coder. Unluckily, such extension does not exist, hence we
need to decompose the image into a binary stream.

The easiest way to proceed is to subdivide the image
into bit-planes and consider each of them as a black/white
image. A problem with this approach is that bit-planes (and
the whole image) can not be modeled as memoryless sources.
As a matter of fact, by analyzing the bit-planes, it is easy to
realize that for each of them the average percentage of white
and black pixels is very close to 50%, hence no compression
gain has to be expected unless the spatial correlation among
pixels is taken into account. For this reason we suggest that

before encryption the image is stored in such a way that the
spatial correlation between bit-planes is (at least partially)
removed.

A simple and fast way to remove the spatial correlation
from the bit planes consists in scanning each row of the bit-
planes from left to right and computing the xor between each
bit and the previous one. In this way the vertical edges are
extracted (see figure 2). The original bit plane can be easily
recovered by xor-ing again the bit-planes along the rows. Of
course, in the least significant bit planes the gain is almost
null, however in the most significant bit-planes the gain is
very large.

A more effective way to remove the spatial correlation is
to act directly on the grey level values, i.e. scan from left
to right sequentially each row of the image and predict the
current pixel value as the average of the four adjacent pixels
in a causal neighborhood. The pixel values are then replaced
by the prediction error. A weighted mean can be considered
to obtain better results, if we consider that the (i− 1, j) and
(i, j− 1) pixels are at distance one from the (i, j) pixel, the
(i−1, j−1) and (i−1, j +1) have distance

√
2. The image

with the prediction error is then decomposed into bit-planes.
A problem with this approach is that the prediction error

can assume value in the range [-255, 255], therefore requir-
ing, at least in principle 9 bit-planes. To avoid this prob-
lem, we can observe that, since the mean is calculated on
known pixels, we know that the difference assumes value in
the range [-mean, 255-mean]. If 255−mean is greater than
127, the interval [128, 255-mean] can be mapped in the in-
terval [-127, -mean-1]. The value 128 becomes −mean− 1,
the value 129 becomes −mean− 2, and so on. We can pro-
ceed similarly if −mean is less than −127. In this way it
is possible to represent the differences by using only 8 bit-
planes: one bit for the sign and seven bits for the module.
The differences usually assume low values and the most sig-
nificant bits are equal to 0. Rarely the differences are greater
then 127, therefore usually there is no necessity to map. The
efficiency of these methods will be shown in the result sec-
tion. Most of the differences have low values and need few
bits for their representation. As a consequence the higher
bit-planes have many bits equal to 0, and allows large com-
pression gains. Note that the probabilities of 0 and 1 in each
bit plane must be stored in clear together with the encrypted
bitplanes to allow the subsequent compression.

Processing each bit plane independently does not allow
to exploit the correlation between bit-planes. As a matter
of fact the conditional entropy between adjacent bitplanes is
H(pi|pi+1)≤ H(pi). If spatial decorrelation is achieved by
means of pixel prediction the sign bitplane is the most noisy,
hence it has to be considered as the LSB bit-plane. To take
into account the correlation among bitplanes the probabilities
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Figure 2: Bit planes after xor-based decorrelation.

of a pixel value in a plane conditioned to the corresponding
values in the upper bit plane are stored in the file. Such prob-
abilities are exploited by the encoder to calculate the con-
ditional entropy of each bit plane conditioned to the upper
plane and decide the compression rate to be applied to each
plane. At the decoder, the probabilities are fed into the BP
algorithm as a-priori probabilities and used to decode the en-
crypted and compressed sequence (see section 5).

4. COLOR CASE

The simplest way to deal with color images is to treat each
band as a gray-scale image. The problem is that by doing
so we neglect the correlation among bands. To get a better
compression rate, the correlation of a bitplane with the same
bit plane of one of other color bands could be considered in-
stead of the correlation with the upper bit plane. In practice,
we select a reference color band, which is coded as a grey
level image, and for the other bands the probabilities of each
pixel value conditioned to the value of the same pixels in the
same bit plane of the reference band are stored. We decided
to use the green band as the reference band.

An alternative approach, consists in passing from the
RGB color space to a color space whose coordinates are
independent of each other (for instance the YCbCr color
space). Unfortunately, the conversion from the RGB color
space to YCbCr coordinates (or other coordinates ensuring
band decorrelation) is an affine operation with non-integer
coefficients, hence compromising the lossless nature of the
scheme. To avoid this problem we used a reversible integer
approximation of the correct transform in a way similar to
that described in [8].

Let x be the vector that identifies a pixel in the RGB
space. Its representation in the target color space is com-
puted by the affine transformation y = A ∗ x + b, where A is
the conversion matrix and b a translation vector. We com-
pute the LU factorization of A. L is a row permutation of a
lower triangular matrix having identity elements on the prin-
cipal diagonal. U is an upper triangular matrix, such that
L ∗U = A. We compute a new matrix U = D ∗U , where D
is the diagonal matrix obtained by the inverse of the diagonal
elements of U (D = diag(U [1,1]−1,U [2,2]−1,U [3,3]−1)). U
is an upper triangular matrix having identity elements on its
principal diagonal. We compute the new representation of y
as y = L ∗U ∗ x + b where b is a translation vector, not nec-
essarily equal to b, computed to ensure that all the possible y

assume positive values. This allows to compute the transfor-
mation and the inverse transformation without errors, but we
can not use only 8 bits to represent each element of y and for
this reason each band representation needs 9 bits.

Let us now analyze in more details the YCbCr transfor-
mation. This transformation is defined by the matrix

A =

[ 0.299 0.587 0.114
−0.169 −0.331 0.5

0.5 −0.419 −0.081

]
.

Applying the LU decomposition we obtain

L =

[ 0.4862 1 0
−0.2392 −0.4921 1

1 0 0

]

U =

[ 0.6150 −0.5150 −0.1
0 0.8374 0.1626
0 0 0.4921

]

From the U matrix we construct

D =

[ 1.6260 0 0
0 1.1942 0
0 0 2.0321

]

to get

U =

[ 1 −0.8374 −0.1626
0 1 0.1942
0 0 1

]
.

Practically, given a pixel x, y can be computed as:

x1[1] = x[1]+ round(−0.0.8374∗ x[2]−0.1626∗ x[3])
x1[2] = x[2]+ round(0.1942∗ x[3])
x1[3] = x[3]

x2[1] = x1[2]+ round(0.4826∗ x1[1])
x2[2] = x1[3]+ round(−0.2392∗ x1[1]−0.4921∗ x1[2])
x2[3] = x1[3]

y[1] = x2[1], y[2] = x2[2]+158, y[3] = x2[3]+255
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To compute the representation y, a constant has been
added to each element of the vector x2 to obtain only pos-
itive values. From the transformed coordinates we can go
back to the original pixel values by applying the same proce-
dure in a reverse way. The rounding error introduced in the
direct transformation is corrected by the inverse transforma-
tion. We have tested over all the possible values that the RGB
vector can assume to be sure that only 9 bits are required to
each band.

Both xor-based and prediction-based spatial decorrela-
tion can be applied to the modified YCbCr, extending them
to 9 bitplanes. Due to the low correlation between the YCbCr
color bands, each band can now be treated independently as
in the grey-scale case.

5. IMPLEMENTATION DETAILS

To encode, decode and decrypt we follow the scheme pro-
posed by Johnson et al. with some important differences.
Let us start with the encoder. In theory the achievable rate
depends only on the source entropy, however for this to be
possible an ideal channel coding step would be required. In
our algorithm such a step is implemented by means of LDPC
codes. Each LDPC code is characterized by a matrix hav-
ing as many rows as the bit length of the bitplanes and as
many columns as the length of the syndrome, both quantities
should be adapted to the bit plane entropy and its size. In or-
der to limit the number of matrices used by the encoder and
the decoder, we decided to fix the number of the rows. This
number needs to be large for a good performance of the code,
hence we chose to work with matrices having 105 rows and
the bitplanes are subdivided into blocks of 105 pixels. A pos-
sible choice is to subdivided them in rectangles 400 bit wide
and 250 bit high. Clearly the probabilities and the entropies
have to be calculated over each block and not over the entire
bitplanes. A similar problem arises because of the impossi-
bility of adapting the code length to the entropy of the block
at hand2. Then we have to consider a finite number of rate
values and construct a corresponding, fixed set of LDPC ma-
trices. Each block will be compressed at the nearest available
rate greater then its entropy. The more the available rates the
better the compression rate (at the expense of simplicity).

The goodness of an LDPC code is related to the absence
of cycles in the Tanner graph associated to it. Building codes
without cycles of size 4 is simple, but finding and correcting
cycles with greater length is difficult. Because of the possible
presence of these cycles, the BP algorithm may not conver-
gence. In practice, LDPC codes present an error region near
to the maximum entropy they can handle. To avoid this prob-
lem, we pay attention to ensure that this critical convergence
region is avoided. In practice we are using 4-long-cycles-free
LDPC codes of length 100000 bits and compression rates
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Because of these solu-
tions, we can not exactly achieve a compression rate equal to
the ideal entropy.

Moreover the encoder needs to know some information
to work. Prior to encryption, it is necessary to compute the
conditional probability to have 0 or 1 conditioned to the value
that the reference bitplane assumes in the same position. For
the first bitplane no reference is available hence we simply

2Whereas with other coding strategies, e.g. turbo coding, it is possible
to adapt the rate of the code on the fly, e.g. by means of proper puncturing
techniques, this is not easy to do with LDPC codes.

compute the probabilities of 0 and 1. This information has to
be transmitted with the encrypted bit-planes. The encrypter
creates a file composed by an header and a sequence of de-
scriptor/block pairs. The header contains information about
the image (height, width, color or gray-scale...). Each de-
scriptor contains the probability values of the associated en-
crypted block, from which the encoder can calculate the cor-
rect compression rate. The format of the bit stream prior to
encryption (and compression) is reported in figure 3. As we
said only the block data is encrypted and then compressed.

Header:
Heigth
Width
Depth

Block
descriptor:

Probabilities
Position

Block:
0010101110100110
0001100000101101
1110101010110001

Block:
0011010101010101
1001010101010111
0101001011101101

Block
descriptor:

Probabilities
Position

Figure 3: Scheme of the file containing the encrypted image.

Let us now analyze the decoder. Decoding and decrypt-
ing are performed jointly. The decoder uses the BP algo-
rithm. Let r[i] be the ith bit of the reference bitplane, k[i] the
ith bit of the key and d[i] the ith bit of the target plane. The ith
data node of the Tanner Graph associated to the LDPC code
must be initialized with the a priori information in f [i], that
is:

in f [i] = a[i]∗ log(
p(d[i] = 1|r[i])

1− p(d[i] = 1|r[i])
where

a[i] =
{

1 if k[i] = 1
−1 if k[i] = 0

The first received bitplane (generally the 8th bitplane of a
grey-scale image or the 8th bitplane of the green band of
a color image) is decoded without a reference bitplane and
the conditional probabilities p(d[i] = 1|r[i]) are replaced by
p(d[i] = 1). Each decoded bitplane has to be decrypted im-
mediately to decode the subsequent bitplanes.

5.1 Security issues
The theoretical security of the scheme in figure 1 has been
proved in [1]. For a perfectly secure system the key must be
as long as the image. This is clearly impractical, hence in
our system the key is produced by a pseudorandom number
generator whose starting seed is transmitted to the decoder
through a secure channel. Particular care must be given to
the file header. This portion of the file contains sensible in-
formation that can help a pirate to decrypt the image. Ci-
phering this portions of the file with an encrypting algorithm
increases the security. Unfortunately this is not possible be-
cause the encoder needs the probability values.

A possible solution could be to avoid encrypting the
probabilities, insert in the descriptor the position of the block
in the image, previously encrypted, and shuffle the descriptor
and block pairs, so that the encoder can still compress each
block since it can be done without any reference to the other
blocks. At the same time, the pirate will learn the conditional
probabilities without knowing the image portion the proba-
bilities are conditioned to.

In [2] a different approach is used, since the characteris-
tics of the image are estimated from doped bits. In this way
a higher level of security is reached, however the system pre-
sented in [2] works only in the presence of a feedback chan-
nel. This is not always possible, for instance it decoding is
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not performed immediately after transmission, since in this
case the source or the encoder may not have yet the image
available.

6. EXPERIMENTAL RESULTS

We carried out several tests over grey-scale and color images.
Here we propose the results obtained on a small set of ten
grey-scale and color images.

Table 1 summarizes the results that we found for the grey
level case. The table gives the conditional entropy of each
bit plane (where conditioning is made with respect to the su-
perior bit plane) and the actual coding rate achieved on each
plane. Both xor- and prediction-based spatial decorrelation
are considered.

The overall theoretical and practical coding rates are also
given. As it can be seen a significant compression is obtained
even by working in the encrypted domain, though a certain
gap with respect to the ideal case exists.

Theoretical Obtained Theoretical Obtained
bit/rate bit/rate bit/rate with bit/rate with

Plane with with prediction- prediction-
xor-based xor-based based based

decorrelation decorrelation decorrelation decorrelation
1 0.9962 1.0000 0.8995 0.9889
2 0.9909 1.0000 0.9902 1.0000
3 0.9276 0.9889 0.9598 1.0000
4 0.7395 0.9667 0.7389 0.9444
5 0.5081 0.6833 0.2934 0.4111
6 0.3411 0.4778 0.1082 0.2278
7 0.2781 0.4000 0.0505 0.2000
8 0.0852 0.2056 0.0033 0.1889

Total 4.8668 5.7222 4.0439 4.9611

Table 1: Theoretical and practical bit/rates with xor- and
prediction-based spatial decorrelation.

As to color images, table 2 shows the rate in bit/pixel that
can be theoretically reached and the actual rate achieved by
our system, both working with RGB and YCbCr coordinates.

Xor-based decorrelaion Prediction-based decorrelation
Repres. Theoretical Obtained Theoretical Obtained
RGB 16.587 18.769 13.759 16.513

YCbCr 15.094 18.044 13.532 16.431

Table 2: Theoretical and practical bitrates (bit/pixel) reached
with xor- and prediction-based decorrelation in RGB and
YCbCr representations.

The results described above should be compared with the
true entropy of the images (note that the tables report the
plane by plane entropies whose sum is surely higher than the
true image entropy, since it fails to remove completely spatial
and cross-plane correlation). This is not an easy task since
the actual entropy of the images is not known. In order to get
a rough idea of the effectiveness of our schemes, we com-
pared the performances of grey-level images with those of a
general purpose entropy coder (the popular WinRar routine),
an image-oriented lossless compression algorithm (JPEG-
LS) and an estimation of the image entropy calculated as the
multilevel entropy of the prediction error, where the simple
prediction scheme described in section 3. A summary of the
results we have got are reported in table 3.

WinRar JPEG-LS Estimation
4.224 3.503 3.920

Table 3: Comparison with WinRar compression, an image-
oriented lossless compression algorithm (JPEG-LS) and an
estimation of the image entropy calculated as the multilevel
entropy of the prediction error.

As it can be seen the results we obtained are promising,
even if the gap to state-of-the-art compression in the plain
domain is still large.

7. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have introduced a few techniques to com-
press encrypted color and grey-level images. The best theo-
retical results are obtained by transforming color images in
an approximated YCbCr domain. As to spatial decorrela-
tion, working on the prediction error gives much better re-
sults, however the xor-based algorithm may lead to an inter-
esting generalization of the proposed scheme towards lossy
compression. It is only needed to erase the lower encrypted
bitplanes to reduce the bit rate while keeping the quality of
the reconstructed image acceptable (this is not possible when
we work with the prediction error since such an error is com-
puted before splitting the image into bitplanes).
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