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ABSTRACT

Localization of an isotropic source using energy measure-
ments from distributed sensors is considered. Usually, such
localization techniques require that the distances between the
sensor nodes and the source of interest have been previously
estimated. This, in turn, requires that sufficient information
about the energy decay model as well as the transmit power
of the source is available. In this work, making the assump-
tion that the locations of nodes near the source can be well
described by a uniform distribution, we derive distance esti-
mates that are independent of both the energy decay model
and the transmit power of the source. Numerical results show
that these estimates lead to improved localization accuracy as
compared to other model-independent approaches.

1. INTRODUCTION

Wireless sensor networks have recently received great atten-
tion because they hold the potential to change many aspects
of our economy and life. Among many applications, ranging
from environmental monitoring to manufacturing, source lo-
calization and tracking has been widely viewed as a canon-
ical problem of wireless sensor networks. Furthermore, it
constitutes an easily perceived application that can be used as
a vehicle to study more involved information processing and
organization problems [13]. On the other hand, the design,
implementation and operation of a sensor network requires
the synergy of many disciplines, including signal process-
ing, networking and distributed algorithms. Moreover, sen-
sor networks must operate using minimum resources: typi-
cal sensor nodes are battery powered and have limited pro-
cessing ability. These constraints impose new challenges in
algorithm development, and imply that power efficient, dis-
tributed and cooperative techniques should be employed.
Most of the source localization methods that have ap-
peared in the literature can be classified into two broad cat-
egories. The algorithms of the first category utilize Time
Delay Of Arrival (TDOA) measurements, whereas the al-
gorithms of the second category use Direction Of Arrival
(DOA) measurements. DOA estimates are particularly useful
for locating sources emitting narrowband signals [5], while
TDOA measurements offer the increased capability of local-
izing sources emitting broadband signals [7]. However, the
methods of both categories impose two major requirements
that render them unappropriate to be used in wireless sensor
networks, i.e.: (a) The analog signals at the outputs of the
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spatially distributed sensors should be sampled in a synchro-
nized fashion, and (b) the sampling rate used should be high
enough so as to capture the features of interest. These re-
quirements, in turn, imply that accurate distributed synchro-
nization methods should be implemented so as to keep the
remote sensors synchronized and that high frequency elec-
tronics as well as increased bandwidth are needed to com-
municate the acquired measurements.

Recently [6], a new approach to source localization was
proposed, that utilizes Received Signal Strength (RSS) mea-
surements. In particular, the spatially distributed sensors
measure the power of the signal due to the source that arrives
at their location. In the sequel, using an energy-decay model,
each sensor is able to extract some information about its dis-
tance to the source of interest. Finally, the required location
of the source is derived by proper fusion of the information
extracted at a number of active sensor nodes. Note that, a
sensor node is characterized as active if its measurement is
greater than a predetermined threshold. In [6], in order to
avoid the ambiguities that arise due to the unknown trans-
mit power of the source, it was proposed to compute ratios
of measurements taken at pairs of active sensors. In [10],
maximum likelihood multiple-source localization based on
RSS measurements was considered. In [12], the problem
of source localization was formulated as a coverage prob-
lem and estimates of the necessary sensor density which
can guarantee a localization error bound were derived. In
[8], a distributed “incremental subgradient” algorithm was
prosposed to yield iteratively the source location estimate.
More recently, a distributed localization algorithm enjoying
good convergence properties was proposed in [2]. In [4], a
non-linear cost function for localization was proposed and it
was proved that its gradient descent minimization is globally
converging. However, all the aforementioned approaches re-
quire knowledge of the energy decay model and/or the trans-
mit power of the source of interest.

In [9], the case of unavailable information about the en-
ergy decay model and the transmit power of the source (i.e.
model-independent case) was considered. The location of
the source was derived by properly averaging the locations
of active sensor nodes. Note at this point that the work in
[9], similarly to our approach, also uses the assumption of
uniform deployment of sensors over the field of interest. An-
other model-independent localization method, that can also
be viewed as a special case of the aforementioned estimator,
is to detect the sensor node with the strongest energy mea-
surement and set the location estimate equal to its location
[6], assuming that this node is the closest one to the source,
the so-called Closest Point of Approach (CPA).



16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

In this work, we propose an alternative model-indepen-
dent estimator. In particular, we derive the Probability Den-
sity Functions (PDFs) of the random variables describing the
distances between the source and the k-th closest sensor node
to the source. Thus, if an active sensor node knows its rank
k, it can obtain the PDF of its distance from the source. A
distributed sorting algorithm, such as the ones proposed in
[3] and [11], can be used so that all active nodes can ob-
tain their rank, by assuming that active nodes with higher
RSS measurement are closer to the energy source. In the
sequel, once all active nodes know their rank, the required
distance estimates are obtained as the expected values of the
respective PDFs. Finally, the distance estimates thus ob-
tained can be used by the so-called “Projection Onto Con-
vex Sets” (POCS) approach of [2], to yield an estimate of
the location of the source of interest. Simulation results have
shown that, in many cases, the proposed model-independent
localization method offers improved accuracy as compared
to other model-independent approaches that rely upon ex-
actly the same assumptions.

2. PROBLEM FORMULATION

Let us consider that N sensor nodes have been deployed uni-
formly at random over a territory of interest. Let us also
consider that an energy source is present in the same area.
Denote the 2 x 1 location vector of the n-th sensor node as
r, and the unknown location vector of the source as r. Each
sensor takes measurements according to the model

yn=0ag(||rn—r||) +wn n=12,...,N (1)
where o > 0 denotes the strength of the source, function g :
Z+ — ZT is monotone decreasing and w,, denote zero mean
statistically independent noise terms. Thus, the localization
problem in our context is defined as: Assuming a function
g(+) as above and given the RSS measurements y, and the
location vectors r, of the sensor nodes, provide an estimate
t of the location vector of the source.

Recently, it has been made clear that the solution to the
localization problem can be computed very efficiently pro-
vided that the distances between the sensor nodes and the
source of interest have been previously estimated. In partic-
ular, [2] and [4] provide globally converging algorithms for
obtaining an estimate of the location of the source in such a
case.

However, it should be stressed that [2] and [4] presume
that the required distance quantities, i.e. ||r, — r||, are some-
how available. Commonly, the estimation of these distances
is based on proper assumptions with respect to the form of
function g(-). In many applications, function g(-) takes the
usual form

1
gx) = o )

where f3 is denoted as the energy decay exponent with typical
values in the range 8 € [2,4]. From (1) and (2), it can be seen
that if the parameters o and 8 are known, then each node can
estimate its distance from the source using

||rn — || 2 (o)) /P . 3)

However, in practice, the aforementioned parameters may
not be known. Furthermore, it is also possible that function

g(+) does not take the form in (2). In such a case, one could
resort to the averaging estimator proposed in [9], or its spe-
cial case, termed the CPA estimator, mentioned in [6]. In the
following, we provide an estimator of the distances for the
model-independent case, so that the approaches in [2] and
[4] can also be applied.

3. MODEL-INDEPENDENT LOCALIZATION

We will start the derivation of the new estimator by first mak-
ing a useful remark: Consider any fixed deployment of N
sensors over a territory of interest, where a fixed source also
exists. Consider also two different energy decay functions
g1(+) and g»(-) and let us ignore noise for the time being.
Since we want to develop a model-independent estimator, it
follows that our estimator would give the same result in both
cases. Considering now the RSS measurements that result
from the two different models, we note that the only com-
mon information between the two sets of measurements is
simply their ordering and not their actual values, since the
only knowledge we have about the energy decay functions
is that they are monotone decreasing. Thus, we deduce that
the only useful information in the model-independent case is
contained in the ordering of the measurements and not their
actual values. In other words, in the model-independent case,
the ordering of the RSS measurements is a sufficient statistic
for the estimation of the location of the source.

In the following paragraphs, we first derive the PDFs of
the distance of the k-th closest sensor to the source, making
the assumption that the locations of nodes near the source
can be well described by a uniform distribution. In the se-
quel, distance estimates are derived as the expected values of
these PDFs. Then, we give a brief description of the POCS
method [2], which is a constituent part of the proposed local-
ization algorithm. Finally, the proposed model-independent
localization method is summarized.

3.1 Derivation of the PDFs of the distances

Let us define an area E in which N sensors have been uni-
formly deployed. The spatial density of this network is de-
fined as d = N/E. Let us also consider that a single source
exists in E, and define a circular area R of radius p around
that source. Define also the random variable &7 describing
the distance of the k-th closest sensor to the source. Then,
the probability that the distance of the k-th sensor away from
the source is smaller than p, is given by:

Pr{Z<p} = Pr{#sensorsinR >k}
1 — Pr{# sensors in R < k}
k—1
= 1—) Pr{#sensorsinR=i} (4)
i=0

where we have used the symbol # as an abbreviation for
the expression “number of”. The required probabilities ¢; =
Pr{# sensors in R = i} can be computed by considering that
each one of the N nodes, independently, either lies in R or
outside R with probabilities equal to R/E and (E —R)/E
respectively, and that there are (1:/ ) different realizations in
which i sensors lie in R, thus

CE) () ()

qi =
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Asymptotically, as N and E = N/d tend to infinity (i.e. the

network covers all the plane, but with constant density), after
some algebra we have that:

. _ (mdp?)’

Nl_l)film[%] = i )
. {N(N—l)---(N—i—i—l)}
N—+eo (N —mdp?)i

2\ N
lim l(lw)
N—+oo N

(ﬂdpz)i o TP

il

(6)

Thus, the Cumulative Density Function (CDF) of the random
variable &, describing the distance of the k-th closest sensor
to the source will be given by:

k—1 d 2\i
Fo(p)=1-Y, (l.—’,’)e‘”dpz : @)
i=0 :

The PDF of &7, will thus be given as the derivative of the
above CDF as:

f#(p) = Fj(p)
- 0 V! d)2ip21 —ndp?
= —i;)ﬁ{(ﬂ) ip™ e

+(mdp?)'e ™ (~2mdp)}
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i!

2

e TP (8)

Defining now the sequence

i+1 git+1 ~2i+1
. 27[ d p eiﬂdpz

ai = - ©)
i!
we have for k = 1 that
fo(p) = ao = 2ndpe ™’ (10)
and for k > 1 that
k—1
fop)=ao+ Y ai—ai 1 =ar . (1)

i=1
Thus, we finally have for all k that the corresponding PDF is
given by

f,@k (P) =day_1 = mpque,ndpz (12)

which concludes our derivation.

3.2 Distance Estimation

Using the PDFs derived in the previous paragraph, the re-
quired distances can be obtained by computing the respec-
tive expected values. Using the form of (12) for f (p) and
Euler’s integral, (see Section 6.1.1 of [1]), it can be shown
that:

oo 1 T(k+1/2)

pfo(p)dp = Jrd TR (13)

E[Z] =
0
where the ratio due to the Gamma function could be precom-
puted and stored in a lookup table. Alternatively, the square
root of the expected value of the square of the random vari-
able & can be used, that yields a simpler formula

VEIZ = < JA +mpzf,%(p)dp>1/2 - \/g (14)

Simulation results presented in Section 4 demonstrate neg-
ligible performance degradation when equation (14) is used
instead of (13).

3.3 Localization via POCS

In [2], source localization using RSS measurements was for-
mulated as a convex feasibility problem. In particular, pro-
vided that all active sensors have an estimate of their dis-
tance to the source, a disk D,, (convex set) was defined for
each one of them, with its center at r, and radius equal to
the estimated distance. Thus, it was proposed to solve the
localization problem by letting the estimator be a point in the
intersection of the sets D,,:

teD= () Dy, (15)
nea/

where 7 denotes the set of active nodes.

Having expressed the localization problem as in (15), it
was then proposed to apply the Projection Onto Convex Sets
approach, to yield a solution. This procedure is known to
converge to a point in D when this set is non-empty, or, when
D is empty, it converges to a limit cycle in the vicinity of
the point that minimizes the sum of distances to the sets D,,.
POCS updates the estimate 6, of the location of the source
at time ¢ (initialized to an arbitrary vector 6y € %2) to the
estimate 6,1, using

641 = 6+ A, (Bp, (6,) — ) (16)

where Bp,(-) is a function that returns the projection of its
vector argument onto the set D,,, i.e. the nearest point (using
Euclidean distance) to 6, that belongs to D,,. Also, A, is a
sequence of properly chosen relaxation parameters [2]. In
the case of source localization, a great advantage of POCS
comes from the fact that function Bp, () can be computed in
closed form.

3.4 Summary of model-independent localization

In this subsection, we summarize the proposed localization
algorithm. The algorithm consists of the following steps:
1. The set of active nodes & = {nj,ny,...,n.} is defined,
consisting of all nodes with measurement y,, > T', where
T a properly selected threshold.
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2. Nodes in &/ run a distributed sorting algorithm, as the
ones proposed in [3] and [11]. The scope of this step is
to compute the ranks k;,, of active sensors, assuming that
nodes with higher energy measurement are closer to the
energy source.

3. Nodes in 2/ compute estimates p,, of their distance to
the source using k,, and formula (13) or (14).

4. The active nodes are organized in a circle. A node, cho-
sen as the first one, initializes the location estimate 6, to
an arbitrary 2 x 1 vector.

5. Each node n; that receives an estimate 6, from the previ-
ous node, checks if ||r,; — || < Py, and if not, it updates
the estimate using [2]:

5.1) ¢ = atan(6,(2) —r,;(2),6,(1) — 1y, (1))

5.2) by =1, +Pu;[cos(9) sin(¢)]”

5.3) 611 =6+ A [biy1 — 6]
where atan(-,-) is the four quadrant inverse tangent func-
tion, and for a vector x € %2, x(1) and x(2) denote its
first and second coordinates, respectively.

6. Node n; forwards 6;,1 to the next node, until a fixed
number of circles has been completed.

4. NUMERICAL RESULTS

In order to assess the performance of the proposed algorithm
we performed some numerical simulations. In particular, N
nodes were uniformly deployed over a 100m x 100m field,
where N was increased from 300 to 3100 in 200 increments.
A signal source with o = 100 was located at r = [50 50]7, i.e.
at the center of the deployment field. The RSS measurements
at the sensor nodes were corrupted by zero mean Additive
White Gaussian Noise (AWGN) with variance 62 = 1. A
threshold 7 = 5 was used to detect active nodes, i.e. only
sensors whose SNR (y,/0?) is greater than 7dB take part in
the estimation procedure. We examined four different energy
decay functions, in particular the one of equation (2) with
B =2, the one of (2) with B = 3, the one having

glx)y=e a7

and the one having
glx)=e 2. (18)

In all cases, 5 different localization algorithms were exam-
ined. In particular, the proposed POCS-based algorithms us-
ing (13) and (14) were compared against the Averaging es-
timator proposed in [9] and the CPA estimator mentioned in
[6]. As a benchmark, the POCS estimator that has perfect
knowledge of the energy decay function and the power of the
source was also included. For all POCS-based algorithms,
we used the constant relaxation sequence A, = 1, while the
final estimate was given as the average of the estimates dur-
ing the last cycle, as was also done in [2]. We performed a
total of 10 cycles. Also note that for the averaging estimator
of [9] we did not use any optimized kernel.

Figures 1.(a) to 1.(d) show the Root Mean Square (RMS)
error obtained for the aforementioned energy decay models,
respectively, as a function of the average number of nodes
that entered the estimation phase. Note that, since the same
threshold T is used for all the examined energy decay mod-
els, the respective average numbers of active nodes differ

significantly. For the last two energy decay models, in the
case where we have full knowledge of their parameters (i.e.
dashed lines), distance estimation was done using the rela-
tions

[lrt, — ]| = —In(y,/) (19)
and
[l —r|| = —2In(y, /o) (20)
respectively.
Three are the main observations that can be made from
Figure 1:

1. As already mentioned, negligible performance degrada-
tion is obtained by using equation (14) in place of equa-
tion (13). Thus, it is concluded that it is not necessary
that sensor nodes should be able to compute values of the
Gamma function or keep a lookup table.

2. Itis seen that for all of the examined energy decay mod-
els, the proposed algorithm yields smaller localization er-
ror than the other model-independent localization meth-
ods, if more than five sensors are on average active.

3. The proposed localization algorithm approaches the per-
formance of the POCS algorithm with perfect knowledge
of the energy decay model and the power of the source, as
the average number of active nodes is increased. This be-
havior is even more noticeable when the received energy
decays slower with distance (i.e. cases (a) and (d)).

5. CONCLUSIONS

Localization of an isotropic energy source using measure-
ments from distributed sensors was considered. The pro-
posed algorithm does not assume any knowledge of the en-
ergy decay function or the power of the source. Instead,
making the assumption that the locations of nodes near the
source can be well described by a uniform distribution, dis-
tances between the sensors and the source of interest that are
invariant to both the energy decay model and the transmit
power of the source were derived. The method of Projections
Onto Convex Sets was employed to yield an estimate of the
source location. Numerical results have shown that these es-
timates lead to improved localization accuracy as compared
to other model-independent approaches and furthermore, the
accuracy of the proposed method is very close to the accu-
racy of other techniques that have perfect knowledge of the
energy decay model and the power of the source.
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