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ABSTRACT

Iterative multi-user detection based on linear minimum
mean square error (LMMSE) filtering in time-variant MIMO
systems involves high computational complexity. Sphere de-
coding after an initial interference cancelation step allows
for substantial complexity reduction if the sphere decoder ex-
ploits the reduced rank time-variant channel subspace. How-
ever, a performance loss in terms of bit error rate (BER) ver-
sus signal to noise ratio (SNR) is incurred mainly due to the
hard decision supplied by the sphere decoder. Building on
past work of the authors we demonstrate in this paper that a
soft output max-log sphere decoder can exploit the reduced
rank time-variant channel subspace as well. We show that
the proposed sphere decoder solution provides a computa-
tionally more efficient approach, with maintained quality in
terms of bit error rate compared to an iterative LMMSE
multi-user detector.

1. INTRODUCTION

We focus on the uplink of a MC-CDMA system based on
orthogonal frequency division multiplexing (OFDM). The
users move at vehicular speed, hence the MIMO channel from
each user to the base-station is time-varying. The receiver
at the base-station performs iterative multi-user (MU) de-
tection using parallel interference cancelation (PIC) followed
by a sphere decoder implemented on a per user basis. In [1],
hard outputs of the sphere decoder are used. This method
has been shown to be less complex than a linear minimum
mean square error filter that would detect all users jointly.
However, the hard sphere decoder, assuming perfect PIC,
does not take residual interference into account and induces
a substantial performance loss.

In this paper we replace the hard sphere decoder by a
soft sphere decoder. The computation of log-likelihood ra-
tios (LLR) lead to an increase of the complexity compared to
hard sphere decoding. Still, the complexity remains about
one order of magnitude below the linear minimum mean
square error (LMMSE) filter complexity.
Contribution of the paper: We develop a soft sphere
decoder, using the complexity efficient subspace based im-
plementation of a sphere decoder developed in [1] in order
to compute the LLR, based on a method presented in [2].
The soft sphere decoder complexity is one order of magni-
tude higher than for hard sphere decoding and one order of
magnitude lower than for LMMSE. The use of soft outputs
allows reaching LMMSE performance.
Notation: We denote a column vector with elements ai by
a. The transpose of a matrix A is given by AT and its con-
jugate transpose by AH. A diagonal matrix with elements
ai is written as diag(a) and the Q × Q identity matrix as
IQ. The norm of a is denoted ‖a‖.

This work has been founded by the EU project MASCOT.

Organization of the Paper: We describe the system
model and iterative receiver with parallel interference can-
celation in Sec. 2. The soft sphere decoder is presented in
Sec. 3. Simulations results are shown in Sec. 4. Comments
on the computational complexity are given in Sec. 5 and
conclusions are drawn afterwards.

2. SYSTEM MODEL

In [1] we present a complexity efficient implementation of
the sphere decoder in an iterative MU-MIMO receiver for
a MC-CDMA uplink, based on the structure of the time-
varying channel model. This paper builds on [1], using its
implementation of a sphere decoder to compute the LLR
with lower complexity.

2.1 Multi-Antenna Transmitter

Let us consider the transmitter of user k ∈ {1, . . . , K}. We
denote its transmit antenna t ∈ {1, . . . , T} by (k, t). (M −
J)T data symbols are jointly coded, interleaved, mapped
to a QPSK constellation and split into T blocks of length
M − J . Transmit antenna (k, t) sends a block of M OFDM
symbols, including J distributed pilot symbols allowing for
channel estimation. Data symbol b(k,t)[m] is spread over all

N subcarriers using a spreading sequence s(k,t) ∈ C
N with

i.i.d. elements from a QPSK constellation. Thus, transmit
antenna (k, t) sends the OFDM symbols s(k,t)b(k,t)[m] for
m 6∈ P, where P is the set of pilot positions in each data
block [3].

2.2 Time-Varying Channel Model

The iterative receiver structure is shown in Fig. 1. The
receiver is equipped with R antennas. The propagation
channel from transmit antenna (k, t) to receive antenna r
is characterized by the frequency response gr,(k,t)[m] ∈ C

N

at time instant m with elements gr,(k,t)[m, q]. The index
q ∈ {0, . . . , N −1} denotes the subcarrier index. The related
effective spreading sequence is defined by

s̃r,(k,t)[m] = diag(s(k,t))gr,(k,t)[m] . (1)

The maximum variation in time of the wireless chan-
nel is upper bounded by the maximum normalized one-sided
Doppler bandwidth νDmax = vmaxfC

c0
TS, where vmax is the

maximum (supported) velocity, TS is the OFDM symbol du-
ration, fC is the carrier frequency and c0 the speed of light.
Time-limited snapshots of the bandlimited fading process
span a subspace with very small dimensionality. The same
subspace is spanned by discrete prolate spheroidal (DPS)
sequences [3] {ui[m]} defined as in [4].

We are interested in describing the time-varying fre-
quency selective channel gr,(k,t) ∈ C

N for the duration of
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Figure 1: Iterative MC-CDMA receiver.

a single data block IM = {0, . . . , M − 1}. For m ∈ IM we
write gr,(k,t)[m] as linear superposition of the first D DPS
sequences, index limited to the time interval IM ,

g̃r,(k,t)[m] = Γr,(k,t)f [m] , (2)

where f [m] = [u0[m], . . . , uD−1[m]]T ∈ C
D for m ∈ IM . In

practical cases, D is of the order of 3 to 5 [3]. Dedicated
pilot symbols together with feedback soft symbols are used
to estimate the coefficients in Γr,(k,t) ∈ C

N×D, see [3].
Inserting (2) in (1) and after summation of the signals

from all transmit antennas of all users, we obtain the signal
at antenna r

yr[m] =

K�
k=1

T�
t=1

diag(s(k,t))Γr,(k,t)f [m]b(k,t)[m] + nr[m] ,

where nr is additive white Gaussian noise (AWGN) with
zero mean and variance σ2IN . Denoting by y[m] =
[y1[m]T, . . . , yR[m]T]T the stacked vector containing the R
received signals, we can write

y[m] = ΓF [m]b[m] + n[m] ,

where Γ = [Γ1 · · ·ΓK ] and

Γk =

��� diag(s(k,1))Γ1,(k,1) · · · diag(s(k,T ))Γ1,(k,T )

...
. . .

...
diag(s(k,1))ΓR,(k,1) · · · diag(s(k,T ))ΓR,(k,T )

� ��
are time-independent. The matrix

F [m] =

��� f [m] 0 0

0
. . . 0

0 0 f [m]

� �� ∈ R
DKT×KT ,

contains the time-varying basis expansion, b[m] =
[b(1,1)[m], . . . , b(K,T )[m]]T ∈ C

KT contains all KT transmit-
ted symbols and n is AWGN with zero mean and variance
σ2INR.

The contribution of user k stemming from symbols
bk[m] = [b(k,1)[m], . . . , b(k,T )[m]]T is defined as

yk[m] = ΓkF 0[m]bk[m] + nk[m] ,

where nk[m] is AWGN with zero mean and variance σ2INR

and F 0[m] contains the first DT rows and T columns of
F [m].

2.3 Parallel Interference Cancelation

We perform PIC for user k by removing the contribution of
users k′ 6= k using soft-symbol estimates [5]

ỹk[m] = y[m] − �
k′ 6=k

Γk′F 0[m]b̃k′ [m]

≈ ΓkF 0[m]bk[m] + nk[m] .
(3)

The soft symbols in b̃k′ are computed from the extrinsic
probabilities supplied by the BCJR decoder [6], from the
previous iteration of the receiver.

3. SOFT SPHERE DECODING

For simplification, we omit the user index k in the follow-
ing. For computational complexity reasons, sphere decod-
ing is performed on a per user basis. Admittedly, under
the assumption that all channels are independent and un-
correlated, the grouping of transmit antennas based on their
physical co-location is not a prerequisite and any partition-
ing would do. However, for intuitive reasons we prefer the
user basis partitioning.

3.1 Conversion Imaginary to Real Space

So far all elements are complex valued. The transmitted
symbols b stem from a QPSK symbol alphabet A ∈ {±1±√

2
}.

However, the soft sphere decoder requires computations of
log-likelihood ratios, which is somewhat simpler to perform
in the real domain.

In order to convert the signal model into the real domain,
we define the subscripts (r) and (i) respectively denoting
the real and imaginary part of a complex, vector or matrix.
Furthermore, we scale the input vector such that we consider

entries for b̂ in {±1} only. We denote (time index m is
omitted in these definitions)

b̂ =
√

2 � b(r)

b(i) 	 , ŷ = � ỹ(r)

ỹ(i) 	 , n̂ = � n(r)

n(i) 	 ,

Γ̂ = � Γ(r) −Γ(i)

Γ(i) Γ(r) 	 and F̂ = � F 0 0
0 F 0

	 .

Then the system model (3) can be rewritten as

ŷ[m] =
1√
2
Γ̂F̂ [m]b̂[m] + n̂[m] . (4)

Using the channel model (4), the maximum likelihood
equation writes

b̂ML[m] = argmin
b

‖ŷ[m] − 1√
2
Γ̂F̂ [m]b̂[m]‖2
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which becomes after QR-decomposition of Γ̂ = Q̂ΓR̂Γ

b̂ML[m] = argmin
b

‖ẑ[m] − R̂ΓF̂ [m]b̂[m]‖2 , (5)

where ẑ[m] =
√

2Q̂
T

Γ ŷ[m], Q̂Γ is unitary and R̂Γ is square
upper triangular.

In [1], we developed a suitable implementation to solve
(5), taking the block structure of the basis expansion ma-
trix F [m] into account. Although proven less complex than
LMMSE, this method introduces a substantial loss in per-
formance. This loss is partly due to the fact that the hard
sphere decoder assumes perfect interference cancelation and
thus does not take residual interference into account. An
additional loss is due to the fact that the BCJR decoder
receives hard inputs.

To solve this problem, it is necessary to compute soft
symbols to feed the BCJR decoder. The authors in [2]
present a method to compute the LLR using sphere decod-
ing to reduce the complexity. We will recall the method in
the following, and apply our subspace based implementation,
that is more suitable for time-varying channels.

3.2 Definition of the Log-Likelihood Ratios

Let us denote by λPRIOR(bt), λPOST(bt) and λEXT(bt) the a

priori, a posteriori and extrinsic probabilities of bt = b̂(t),
respectively. For each t ∈ {1, . . . , 2T}, these are given by

λPRIOR(bt) = ln 
 p(bt = +1)
p(bt = −1) � ,

λPOST(bt) = ln 
 p(bt = +1|ẑ)
p(bt = −1|ẑ) � and

λEXT(bt) = λPOST(bt) − λPRIOR(bt) .

(6)

3.3 Explicit Computation of Extrinsic Probabilities

Let B
+
t and B

−
t be the subsets of {−1, +1}2T such that bt =

+1 or bt = −1, respectively. We have

p(bt = ±1|ẑ) = �
b̂∈B

±
t

p(b̂|ẑ) = �
b̂∈B

±
t

p(ẑ|b̂) · p(b̂)/p(ẑ)

= p(bt = ±1)/p(ẑ) �
b̂∈B

±
t

p(ẑ|b̂) �
t′ 6=t

p(bt′)

leading to

λPOST(bt) = λPRIOR(bt) + ln ����
�̂

b∈B
+
t

p(ẑ|b̂) · �
t′ 6=t

p(bt′)�̂
b∈B

−
t

p(ẑ|b̂) · �
t′ 6=t

p(bt′)

������ .

We also know

p(bt′ = ±1) =
exp (±λPRIOR(bt′))

1 + exp(±λPRIOR(bt′))

=
exp (−λPRIOR(bt′)/2)

1 + exp(−λPRIOR(bt′))� ��� �
At′

· exp � ±λPRIOR(b
t′

)

2 �
= At′ exp � bt′

λPRIOR(b
t′

)

2 � .

and thus�
t′ 6=t

p(bt′) = � �
t′ 6=t

At′

��� ��� �
At

· exp ���
t′ 6=t

bt′λPRIOR(bt′ )
2 �

= At exp 
 b
T
t λPRIOR,t

2 �

where bt contains b̂ except bt and λPRIOR,t contains the a
priori probabilities of the elements of bt. Finally, after sim-
plification, we obtain

λEXT(bt) = ln
�������
�̂

b∈B
+
t

p(ẑ|b̂) · exp � b
T
t λPRIOR,t

2 ��
b̂∈B

−
t

p(ẑ|b̂) · exp � b
T
t λPRIOR,t

2 �
� ������� .

Knowing bT
t λPRIOR,t = b̂

T
λPRIOR − btλPRIOR(bt) and

p(ẑ|b̂) ∝ exp � − 1
σ2 ‖ẑ − R̂ΓF̂ b̂‖2 � , and using the max-log

approximation [7] the extrinsic probability becomes

λEXT(bt) ≈ max
b̂∈B

+
t


 − 1
σ2 ‖ẑ − R̂ΓF̂ b̂‖2 + b̂

T
λPRIOR

2 �
− max

b̂∈B
−
t


 − 1
σ2 ‖ẑ − R̂ΓF̂ b̂‖2 + b̂

T
λPRIOR

2 �
−λPRIOR(bt) .

To maximize the two expressions above, it is useful to

find a vector Λ satisfying 4(R̂ΓF̂ )TΛ = σ2λPRIOR. This
allows writing

max � − 1
σ2 ‖ẑ − R̂ΓF̂ b̂‖2 + b̂

T
λPRIOR

2 �
= max  !" !# − 1

σ2 ‖ẑ − R̂ΓF̂ b̂‖2 + 2
� R̂ΓF̂ b̂ � T

Λ

σ2 $ !%!&
= − 1

σ2 min ‖ẑ + Λ − R̂ΓF̂ b̂‖2 + c ,

where c is not dependent on b̂. For instance, it
can be easily checked that the vector Λ defined as

Λ = σ2

2uD−1
[0, . . . , 0, λPRIOR(1), . . . , 0, . . . , 0, λPRIOR(T )]T ∈

R
2TD is a valid solution.

Let us now define bSD the ML solution of the equation

argmin ‖ẑ +Λ− R̂ΓF̂ b̂‖2, and s the sign of its t−th element
bSD(t). The extrinsic probability is simplified to

λEXT(bt) = − bSD(t)

σ2 ‖ẑ + Λ − R̂ΓF̂ bSD‖2

+
bSD(t)

σ2 min
b∈B

−s

t

‖ẑ + Λ − R̂ΓF̂ b‖2

−λPRIOR(bt), .

Denoting bSD,t the solution of argmin
b∈B

−s

t

‖ẑ +Λ− R̂ΓF̂ b‖2,

we obtain

λEXT(bt) = − bSD(t)

σ2 ‖ẑ + Λ − R̂ΓF̂ bSD‖2

+
bSD(t)

σ2 ‖ẑ + Λ − R̂ΓF̂ bSD,t‖2

−λPRIOR(bt), .

(7)

The 4T +1 vectors bSD and bSD,t can be computed using
hard sphere decoding, λPRIOR is given by the soft inputs
from the iterative receiver.

3.4 Iterative Receiver with Subspace-based Sphere
Decoder

We use the subspace-based implementation of the sphere de-
coder that has been presented and detailed in [1]. To summa-
rize, this implementation making use of the subspace struc-
ture and the channel model presented in Sec. 2 allows sav-
ing complexity by performing only one QR-decomposition
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Figure 2: Hard vs Soft Sphere Decoder: BER versus SNR
after 4 receiver iteration for K ∈ {16, 32} users. The channel is
perfectly known (top) or estimated (bottom).

valid for a whole data block (see (5)) instead of one per data
symbol. This implies modifications of the sphere decoder
algorithm into a block structured sphere decoder. The de-
tails can be found in [1]. Note that the algorithm in [1]
performs hard-sphere decoding and is used to compute the
4T + 1 vectors bSD and bSD,t ∈ {1, . . . , 2T} needed for the
log-likelihood ratios in (7).

The soft outputs of the sphere decoder λPRIOR are sent
to a BCJR decoder [6], which provides extrinsic and a pos-
teriori probabilities on the data bits. Both are fed back for
the next receiver iteration (see Figure 1). The a posteriori
probabilities are used for channel estimation (see [3]). The
a priori probabilities needed as soft input for the sphere de-
coder are computed using λPRIOR = λPOST − λEXT, see (6)

4. SIMULATION RESULTS

The realizations of the time-varying frequency-selective
channel are generated using an exponentially decaying power
delay profile with root mean square delay spread TD = 4TC =
1µs for a chip rate of 1/TC = 3.84 · 106 s−1 [8]. We assume
L = 15 resolvable paths. The autocorrelation for every chan-
nel tap is given by the classical Clarke spectrum [9]. The sys-
tem operates at carrier frequency fC = 2 GHz and the users
move with velocity v = 70kmh−1. These gives a Doppler
bandwidth of BD = 126Hz. We use T = R = 4 transmit
and receive antennas and N = 64 subcarriers. A data block
consists of M = 256 OFDM symbols including J = 60 pilot
symbols. The system is designed for vmax = 102.5 kmh−1

which results in a dimension D = 3 for the Slepian basis ex-
pansion. The MIMO channel taps are normalized in order to
analyze the diversity gain of the receiver only. No antenna
gain is present due to this normalization.

For data transmission, a convolutional, non-systematic,
non-recursive, 4 state, rate RC = 1/2 code with code genera-
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Figure 3: Soft Sphere Decoder vs LMMSE BER versus SNR
after 4 receiver iterations for K ∈ {16, 32} users. The channel is
perfectly known (top) or estimated (bottom) at the receiver.

tors (5, 7)8, is used. All illustrated results are obtained by av-
eraging over 100 independent channel realizations. We define
the signal-to-noise ratio Eb/N0 = PM/ ' 2RCσ2N(M − J) ( ,
taking into account the loss due to coding, pilots and cyclic
prefix. The noise variance σ2 is assumed to be known at the
receiver.

The following simulations have been performed:
• Hard Sphere Decoder vs Soft Sphere Decoder

A comparison of the performance of soft and hard sphere
decoders is shown in Fig. 2. Using soft input soft output
sphere decoder allows at least 2dB gain over hard sphere
decoding.

• Soft Sphere Decoder vs LMMSE We compare the
performance of the soft sphere decoder on a per user basis
to the performance of a LMMSE equalizer detecting jointly
all users in Fig. 3. Both detection methods perform similar.

5. ON THE COMPUTATIONAL COMPLEXITY

We define a flop as a floating point operation (addition, sub-
straction, multiplication, division or square root) in the real
domain [10]. Thus, one complex multiplication (CM) re-
quires 4 real multiplications and 2 additions, leading to 6
flops. Similarly, one complex addition (CA) requires 2 flops.

We denote by qt ≤ Q(T−t+1) the number of candidates after
the step t of the sphere decoder (see [1] for details). qt is a

random variable since it depends on the realization of b, Ŝ
and n. Q = |A| is the size of the alphabet.

5.1 Hard Sphere Decoder

As given in [1], the computational complexity for a block of
length M − J using hard sphere decoding requires:

• one thin complex QR factorization of size NR×DT , with
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computational complexity [10]

cQR = 8(DT )2 
 NR − DT

3 � flops ,

• M − J runs of the hard sphere decoder with complexity

chard[m] = 2D
T−1�
t=1

[(T − t)(4D + 3) − 2D + 1] qt+1[m]

+4(T − 1)DQ(D + 2) flops .

An upper bound of this expression can be computed using
qt = Q(T−t+1), which corresponds to the case where all com-
binations remain valid candidate at all steps. This is equiv-
alent to an exhaustive search using the sphere decoder im-
plementation and an infinite radius:

chard[m] ≤ 2D(4D + 3)
T−1�
t=1

tQt − 2D(2D − 1)
T−1�
t=1

Qt

+4(T − 1)DQ(D + 2) flops .
(8)

The computational complexity for a single data block can be
upper bounded using (8) and Chard = cQR + �

m6∈P
chard[m].

5.2 Soft Sphere Decoder

Computations are very similar except that they are done in
the real domain. Thus dimension are multiplied by a factor
2. However, we have now real multiplications and additions,
equivalent to one flop each. Furthermore, the alphabet size
is reduced to Q/2. The computations required are:
• one thin real QR factorization of size 2NR × 2DT , with

computational complexity [10]

cQR = 8(DT )2 
 NR − 2DT

3 � flops ,

• (M−J)(4T+1) runs of the subspace based sphere decoder
with complexity

csoft[m] = D
2T−1�
t=1

[(2T − t)(2D + 1) − D] qt+1[m]

+(2T − 1)DQ(D + 1)/2 flops .

As previously, an upper bound of this expression can be

computed using qt = ' Q

2 ( (2T−t+1)
:

csoft[m] ≤ D(2D + 1)
2T−1�
t=1

t ' Q

2 ( t − D
2T−1�
t=1

' Q

2 ( t
+(2T − 1)DQ(D + 1)/2 flops .

(9)

The complexity for a single data block can be upper bounded
using (9) and Csoft = cQR + (4T + 1) �

m6∈P
csoft[m] .

5.3 Comparison of the computational complexity

In Fig. 4 we show upper bounds of the iterative receiver
complexity over a block of size M − J using, respectively,
hard sphere decoder, soft sphere decoder and linear mini-
mum mean square error (LMMSE), see for example [11] for
details. We can see that the soft sphere decoder is about one
order of magnitude more complex than the hard sphere de-
coder and one order of magnitude less complex than LMMSE
detection.

6. CONCLUSIONS

We have presented a subspace based implementation of a soft
sphere decoder, making use of the basis expansion channel
model.

Hard SD Soft SD LMMSE
1

1e2

1e4

1e6

1e8

Figure 4: Upper bound for the complexity per user: we
show the maximum computational complexity using hard sphere
decoding as in [1], soft sphere decoding or LMMSE.

This allows for complexity reduction when the channels
are time-varying. The use of soft outputs is a compromise
between complexity and performance. The soft sphere de-
coder performs close to the LMMSE filter, while saving one
order of magnitude of complexity.
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