
MULTIPLE ACCESS INTERFERENCE PLUS NOISE CONSTRAINED LEAST MEAN
SQUARE ALGORITHM

Azzedine Zerguine, Muhammad Moinuddin and Asrar U. H. Sheikh

Electrical Engineering Department
King Fahd University of Petroleum & Minerals,

Dhahran 31261, Saudi Arabia.
E-mail: {azzedine, moinudin, asrarhaq}@kfupm.edu.sa.

ABSTRACT

In this work, a constrained least-mean-square (LMS) algorithm,
which incorporates the knowledge of the number of users, spread-
ing sequence length and additive noise variance, is developed sub-
ject to the new combined constraint comprising both the MAI and
noise variance. The novelty of this constraint resides in the fact
that the MAI variance was never used as a constraint. This con-
strained optimization technique results in an (MAI plus noise)-
constrained LMS (MNCLMS) algorithm. Convergence analysis is
carried out of the proposed algorithm in the presence of MAI. Fi-
nally, a number of simulations are conducted to compare perfor-
mance of MNC-LMS algorithm with other adaptive algorithms.

1. INTRODUCTION

In the performance of multiuser environment, the major limiting
factor is the multiple access interference (MAI). Hence, a mul-
tiuser detection receiver that deals with the effect of both MAI and
additive noise must be designed. The rationale behind such a need
is explained as follows. Previous research work simply incorpo-
rated the MAI as part of the interfering noise; although MAI was
a wholly unstructured white Gaussian noise as it was invariably
assumed.

Recently an LMS-type algorithm that exploits the knowledge
of channel noise variance for identification and tracking of FIR
channels, called noise constrained LMS (NCLMS) algorithm, was
proposed [1]. Since the NCLMS algorithm does not consider the
effect of MAI, a more effective constrained LMS algorithm is de-
veloped in this work by adding one more constraint (MAI vari-
ance) to the usual noise variance in the algorithm’s structure. This
constraint optimization procedure results in an MAI-plus-noise-
constrained-LMS (MNCLMS) algorithm which is a generalized
constrained adaptive algorithm that includes a class of algorithms
as special cases such as MAI-constrained-LMS (MCLMS) algo-
rithm, noise-constrained-LMS (NCLMS), and zero noise-constrained-
LMS (ZNCLMS) algorithms. Note that MCLMS algorithm is a
by-product of the MNCLMS algorithm. Moreover, the variance of
MAI is also derived for the case of a synchronous downlink DS-
CDMA system that uses BPSK signals and rectangular signature
waveforms with random signature sequences.

2. ALGORITHM DEVELOPMENT

In a multiuser CDMA system, the output of the matched filter
matched to the desired user’s spreading waveform consists of three

parts. These are: the desired user’s component (bn), the MAI (mn)
and the additive white Gaussian noise (ηn), i.e.,

rn = bn + zn, (1)

where zn is the sum of MAI (mn) and noise (ηn) with variance
σ2

z . The desired user’s component can be written as follows:

bn = hT
nxn, (2)

where hT
n = [hn hn−1 · · · hn−N+1] corresponds to the time vary-

ing channel impulse response and xT
n = [xn xn−1 · · · xn−N+1] is

the input vector to the channel, where N is the length of the adap-
tive filter. If wn represents the impulse response of the adaptive
filter, then the mean-squared error (MSE) to be minimized is given
by:

J(wn) = E{e2
n}, (3)

where en is the error between the output of the matched filter and
the adaptive filter and is defined as:

en = rn −wT
n xn. (4)

Minimization of the cost function (3) over wn gives the optimal
weight value at time n, i.e., wopt = hn with Ĵ(wopt) = σ2

z . It
can be shown that knowledge of σ2

z is useful in selecting the search
direction of an adaptive algorithm in multiuser environment simi-
lar to the case of NCLMS algorithm in a single user environment.

Now, consider the following constrained minimization prob-
lem that incorporates knowledge of σ2

z : Minimize J(wn) over
wn subject to constraint J(wn) = σ2

z . The Lagrangian for this
problem is:

J1(wn, λ) = J(wn) + λ
[
J(wn) − σ2

z

]
. (5)

Since, the critical values of λ are not unique in this case, aug-
mented Lagrangian is used to avoid this problem giving the fol-
lowing cost function:

J2(wn, λ) = J(wn) + γλ
[
J(wn) − σ2

z

]− γλ2. (6)

Solution of the above equation for the augmented Lagrangian is
obtained and can be shown to be given by:

wn+1 = wn + αnenxn, (7)

αn = α(1 + γλn), (8)

λn+1 = λn + β
[1
2
(e2

n − σ2
z) − λn

]
, (9)



where α and β are positive step-sizes. The adaptive algorithm de-
veloped above is named as MAI plus noise constrained LMS (MN-
CLMS) algorithm. It can be seen from (8) that the LMS algorithm
is recovered when γ = 0. Since, the MNCLMS algorithm depends
upon the variance of the MAI, it is therefore expected here to out-
line a procedure by which this quantity is evaluated. The ensuing
analysis details this procedure.

2.1. Variance of MAI

In this work, a synchronous DS-CDMA transmitter model for the
downlink of a mobile radio network is considered. Considering a
flat fading channel whose complex impulse response for the nth

symbol is:
Hn(t) = hnejφnδ(t), (10)

where hn is the envelope and φn is the phase of the complex chan-
nel for the nth symbol. Assuming that the receiver is able to per-
fectly track the phase of the channel, the detector in the receiver
observes the signal:

y(t) =

∞∑
n=−∞

K∑
k=1

Akbk
nsk

n(t)hn + η(t), (11)

where K represents the number of users, sk
n(t) is the rectangu-

lar signature waveform with random signature sequence of the kth

user defined in (n − 1)Tb ≤ t ≤ nTb, Tb and Tc are the bit pe-
riod and the chip interval, respectively, related by Nc = Tb/Tc

(chip sequence length), {bk
n} is the input bit stream of the kth user

({bk
n} ∈ {−1, +1}), hn is the nth channel tap which introduces

flat fading (hn = 1 for AWGN channel), Ak is the transmitted
amplitude of the kth user and η(t) is the additive white Gaussian
noise with zero mean and variance σ2

η . The cross-correlation be-
tween the signature sequences of users j and k for the nth symbol
is ρk,j

n =
∫ nTb

(n−1)Tb
sk

n(t)sj
n(t)dt =

∑Nc
l=1 ck

n,lc
j
n,l, where {ck

n,l}
is the normalized spreading sequence (so that the autocorrelations
of the signature sequences are unity) of user k for the nth symbol.

The receiver consists of a matched filter at the front end which
is matched to the signature waveform of the desired user. In our
analysis, the desired user will be user 1. Thus, the matched filter’s
output for the nth symbol can be written as follows:

rn = A1b1
nhn +

K∑
k=2

Akbk
nρk,1

n hn + ηn. (12)

The second term in the above equation is called MAI, i.e., mn =∑K
k=2 Akbk

nρk,1
n hn. It can be seen that the cross-correlation ρk,1

n

is in the range [−1, +1] and can be set up to the following relation
:

ρk,1
n = (Nc − 2d)/Nc, d = 0, 1, · · ·, Nc, (13)

where d is a binomial random variable with equal probability of
success and failure, thus, its mean and variance are E[d] = 1

2
Nc

and σ2
d = 1

4
Nc, respectively. Since the channel taps are indepen-

dent from the spreading sequences and the data sequences, there-
fore the interferer’s components, Akbk

nρk,1
n hn, ∀k �= 1, are inde-

pendent of each other and have zero mean. Thus, the variance of
MAI, σ2

m, with equal transmitted powers can be shown to be:

σ2
m =

A2(K − 1)

Nc
E[h2

n], (14)

where E[h2
n] is the second moment of hn.

2.2. The MNCLMS adaptive algorithm

Ultimately, based on the above analysis, the proposed MNCLMS
algorithm defined by (7)-(9), is now modified to incorporate the
changes, especially the variance of MAI to finally look like:

λn+1 = λn +β
[ 1

2

(
e2

n − A2(K − 1)E[h2
n]

Nc
−σ2

η

)
−λn

]
, (15)

and the input vector xn in (2) is [A1b1
n A1b1

n−1 · · · A1b1
n−N+1]

T .
It can be seen from (15) that in the absence of noise, σ2

η = 0, the
MAI constrained LMS (MCLMS) algorithm is obtained. More-
over, we can recover the noise constrained LMS (NCLMS) and the
zero noise constrained LMS (ZNCLMS) algorithms [1] by substi-
tuting K = 1 (single user scenario) and K = 1 with σ2

η = 0,
respectively. Thus, the MNCLMS algorithm can be considered
as a generalized constrained adaptive algorithm that includes the
MCLMS, the NCLMS and the ZNCLMS algorithms as special
cases.

3. CONVERGENCE ANALYSIS OF THE MNCLMS
ALGORITHM

In this section, we consider a multiuser system scenario and carry
out the convergence analysis of the proposed MNCLMS algorithm
in the presence of both MAI and additive Gaussian noise.

The Gaussian approximation for MAI is well known and has
been used in various forms [3, 4, 5]. Since MAI has no dependency
on the noise process, consequently MAI plus noise (zn) is also
independent of the input process {xn}.

Note that since αn and wn are functions of {xk, ηk : k ≤ n},
they will, in general, be dependent. However, when parameters are
chosen so that the steady-state variance of αn and/or wn is small,
then for any fixed time n, the step-size αn and the weight vector
wn are statistically independent.

Also, since xk and xn are uncorrelated for n �= k, they are
independent as well. Thus, it can be shown that input sequence xn

and the weight error vector un, that will be defined later, are also
independent.

3.1. Convergence in the Mean

The weight update equation for the proposed algorithm is given
by (7). If wopt is the optimum value of the weight according to
the Wiener solution, i.e., exact solution for the parameters of the
actual system, then we can define the weight error vector, un, as
follows:

un = wn − wopt. (16)

Thus, using the above relation it can be shown that in the system
identification scenario en can be setup into the following relation:

en = zn − uT
nxn. (17)

Now subtracting wopt from both sides of the Equation (7) and
taking the expectation by using the aforementioned assumptions,
we get:

un+1 = (I− αnR)un, (18)

where R = E[xnxT
n ] is the correlation matrix of the input pro-

cess, un = E[un] is the mean weight error vector and αn =
E[αn] is the mean step-size.



Similarly, if we define the mean lagrangian multiplier as λn =
E[λn], it can be shown that:

αn = α(1 + γλn), (19)

and λn+1 = (1 − β)λn +
β

2
εn, (20)

where εn = E[e2
n] − σ2

z is the excess mean square error (EMSE)
at time n.

If λ
′
1, λ

′
2, · ··, λ

′
N represent the eigenvalues of the input

correlation matrix R, the necessary condition for convergence in
the mean is represented by:∣∣∣1 − αnλ

′
k

∣∣∣ < 1, ∀ k. (21)

Thus, the value of αn is bounded in the range:

0 < αn <
2

λ′
max

,

where λ
′
max is the maximum eigenvalue of the input correlation

matrix R. Using the approach of [6], a strong but simpler sufficient
condition for convergence of the mean weight error vector can be
written as:

αmax <
2

λ′
max

.

Now, defining Kn = E[vnvT
n ] as weight error vector corre-

lation matrix, the following recursion can be obtained:

Kn+1 = Kn − αn

(
RKn + KnR

)
+ α2

n

(
2RKnR + Rεn + σ2

zR
)
, (22)

where we have used the fact that εn = Tr(RKn).
Similarly, if α2

n = E[α2
n] and λ2

n = E[λ2
n], then using Gaus-

sian Factoring Moment Theorem [2], it can be shown that

α2
n = α2(1 + 2γλn + γ2λ2

n) (23)

and λ2
n+1 = (1 − β)2λ̄2

n + β(1 − β)λnεn

+
β2

4

(
3ε2n + 6Tr

(
RKnRKn

)
− 6

(
vT

nRvn

)2
+ 4σ2

zεn + 2σ4
z

)
. (24)

3.2. Steady-State Performance

Now, considering the steady-state scenario, i.e., when n → ∞.
Let αs, λs, α2

s , and λ2
s denote the steady-state values of αn, λn,

α2
n, and λ2

n, respectively. Knowing the fact that at vs = 0, and
using equations (19), (20), (24), and (24), following steady-state
values are obtained:

αs = α(1 + γεs/2), (25)

λs =
εs

2
, (26)

α2
s = α2(1 + 2γλs + γ2λ2

s), (27)

λ2
s =

1

(2 − β)

[(1

2
+

β

4

)
ε2s +

3

2
βTr

(
RKsRKs

)

+ βσ2
zεs +

β

2
σ4

z

]
. (28)

Now, taking trace of both sides of (22) at steady-state, following
recursion can be obtained:

2αsεs = α2
s

[
2Tr

(
RKsR

)
+ εsTr(R) + σ2

zTr(R)
]

(29)

Using unitary transformation R = QΛQH with Q has a set of
orthogonal set of eigenvectors associated with the eigenvalues of
matrix R and Λ is a diagonal matrix having eigenvalues of the
matrix R. Thus, by applying this unitary transformation, the fol-
lowing relations can be obtained:

Tr
(
RKsRKs

)
= k1ε

2
s, (1/N) ≤ k1 ≤ 1, (30)

and
Tr
(
RKsR

)
= k2Tr(Λ)εs, 0 ≤ k2 ≤ 1. (31)

Now, substituting the values of αs, λs, α2
s and λ2

s in (29), follow-
ing quadratic equation in εs is obtained:

Aε3s + Bε2s + Cεs + D = 0 (32)

where

A = −αTr(Λ)

{
γ2
(
2k2 + 1

)
(2 − β)

[
1

2
+ (1 + 6k1)

β

4

]}
,

(33)

B = γ − αTr(Λ)

{
γ2σ2

z

(2 − β)

[
1

2
+ (1 + 6k1)

β

4

]

+
(
γ +

γ2βσ2
z

(2 − β)

)(
2k2 + 1

)}
, (34)

C = 2 − αTr(Λ)

[(
1 +

γ2βσ4
z

2(2 − β)

)(
2k2 + 1

)

+

(
γ +

γ2βσ2
z

(2 − β)

)
σ2

z

]
, (35)

and D = −αTr(Λ)σ2
z

(
1 +

γ2βσ4
z

2(2 − β)

)
. (36)

Assuming αTr(Λ) << 1, which is a well known approximation
for the steady-state MSE of LMS algorithm [7], it can be shown
that steady-state value of εs is close to zero. Thus, higher pow-
ers εs can be ignored. Hence, the asymptotic expression for the
steady-state EMSE of MNCLMS algorithm can be shown to be:

εMNCLMS ≈ αTr(Λ)σ2
z

2

[
1 +

γ2βσ4
z

2(2 − β)

]
. (37)

4. SIMULATION RESULTS

In this section, the performance analysis of the LMS, the NCLMS,
the ZNCLMS, the MCLMS and the MNCLMS algorithms is in-
vestigated where an adaptive interference cancellation scenario in
a synchronous CDMA multiuser system for a downlink scenario is
considered in AWGN and flat Rayleigh fading environments. Ran-
dom signature sequences of length 31 and rectangular chip wave-
forms are used. One scenario of 4 users with equal transmitted
powers is considered. The signal-to-noise ratio (SNR) is set at 20
dB.



The comparison of the convergence speed of these algorithms
for 4 users in an AWGN channel is depicted in Fig. 1. It can
be seen from this figure that the MNCLMS algorithm was able to
achieve an MSE of around -10 dB at around 150 iterations while
the first of the other algorithms converged at this same MSE value
after only 300 iterations, hence a two-fold gain in convergence
speed. The behavior of the step-size of the proposed algorithm is
depicted in Fig. 2 for 4 users under equal transmitted power sce-
nario. This figure shows that initially, in the transient state, the
MNCLMS algorithm has the largest step-size value when com-
pared to the other algorithms and thus yields the fastest conver-
gence. Also, in the steady-state, the step-size parameter of the
MNCLMS algorithm was reduced to the smallest value amongst
all algorithms.
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Fig. 1. MSE behaviour for different algorithms in an AWGN En-
vironment under equal transmitted power scenario.
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Fig. 2. Behavior of time varying Step size of the MNCLMS algo-
rithm.

The effect of a sudden increase in the number of users on the
performance behaviour of these algorithms is reported in Fig. 3.
It can be seen from this figure that the proposed algorithm is still
able to recover faster than the rest of the algorithms as the number
of users is increased from 4 to 10. Therefore, a consistency in the
performance of the proposed algorithm is maintained.

In the case of unequal transmitted powers, the user of interest,
user one here in this scenario, has a transmitted power equals to
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Fig. 3. Effect of a sudden increase in number of users from 4users
to 10 users.

one; while the rest of the users, their transmitted powers are uni-
formly distributed between zero and one. Fig. 4 shows the com-
parison of the convergence speed for the algorithms under consid-
eration. As depicted in this figure, a consistency in performance of
the proposed algorithm is observed. The proposed algorithm was
able to achieve an MSE of around -16 dB at around 170 iterations
while the first of the other algorithms converged at the same MSE
value after only 320 iterations.

The result for unequal transmitted powers, Fig. 4, is better
than that of the equal transmitted powers, Fig. 1. The reason is
that in the unequal transmitted powers scenario, some users may
have transmitted powers less than one (because of uniform power
assignment between zero and one) which decreases the effect of
MAI in the system. However, in the case of equal transmitted pow-
ers all users have equal transmitted powers (one) which obviously
increases MAI in the system.
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Fig. 4. MSE behaviour for different algorithms in an AWGN En-
vironment under unequal transmitted power scenario.

Figure 5 compares the BER performance of the proposed al-
gorithm with the LMS algorithm for 4 users in an AWGN envi-
ronment. As expected the proposed algorithm maintains its supe-
riority over the LMS algorithm. The proposed algorithm attains
lower error floor than that of the LMS algorithm. As can be de-
picted from this figure, the LMS algorithm saturates around an er-
ror floor of approximately 8 × 10−3 after an SNR greater than 17



dB. While the proposed algorithm saturates around an error floor
of approximately 2.5× 10−4 after an SNR greater than 27 dB. An
improvement with the proposed algorithm of approximately 6 dB
over the LMS algorithm at a BER of 9 × 10−3 has been clearly
achieved.

Figure 6 depicts the analytical result of the MNCLMS algo-
rithm when compared to the experimental one for 4 users. As can
be seen from this figure that the analytical result matches quite
well the experimental one.
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Fig. 5. BER performance of the proposed algorithm with the LMS
algorithm.
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Fig. 6. Analytical and experimental results of the MNCLMS.

Finally, the convergence speed of the proposed algorithm is
investigated in flat Rayleigh fading environment. A fast-fading
scenario with a doppler frequency (fd) of 150 Hz and a data rate
of 3.84 Mcps is considered here. Figure 7 shows the MSE learning
curves for the LMS, the NCLMS, the ZNCLMS, the MCLMS and
the MNCLMS algorithms for 4 users in a Rayleigh fading environ-
ment. It can be seen from the figure that the MNCLMS algorithm
converges faster than the others, thus showing a great performance
improvement in terms of convergence rate. Consistency in perfor-
mance for the MNCLMS algorithm is observed here.
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Fig. 7. MSE in flat Rayleigh fading, fd=150 Hz.

5. CONCLUSION

In this work, we proposed a new constrained LMS-type algorithm
(MNCLMS) for multiuser wireless environments and studied its
performance both analytically and by simulations. The MNCLMS
algorithm can be considered as a generalized constrained adaptive
algorithm that includes the MCLMS, the NCLMS and the ZN-
CLMS algorithms as special cases. Our study included a thorough
comparison of the proposed MNCLMS algorithm with a number
of other well-established algorithms and showed that, overall, the
MNCLMS enjoys a superior performance. Finally, similar behav-
ior is obtained for the case of 20 users.
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