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ABSTRACT

We consider the problem of multicast rate optimization for
a given number of multicast groups. The efficient solution
of this problem is particularly relevant for video multicast.
Motivated by practical considerations, such as the need for
adaptivity to changing network conditions, we develop an
analytical solution that minimizes the expected distortion of
a receiver. Unlike previous work, we recognize variability
in existing networks and model the receiver reception ca-
pacities by a continuous stochastic variable. Our analytical
solution is optimal under the assumption of a large number
of multicast groups. We investigate the distortion overhead
when this assumption is not satisfied and find that it is low.
We compare our results to the state of the art, iterative op-
timization for a realization of receiver reception capacities,
and find that our analytical solution performs better for any
number of multicast groups.

1. INTRODUCTION

Multicast is a bandwidth efficient technique for transmission
of a source to many receivers. Its efficiency is rooted in the
fact that the source encoding is transmitted only once over
any given link in the network. The potential increase in net-
work throughput is at its largest when multicast is used for
transmission of data requiring high bit-rates to a large num-
ber of receivers. The most obvious application is live video
transmission of popular events, such as sports. However,
the bandwidth efficiency comes at the cost that all receivers
must settle for the same encoding of the source. Hence, all
receivers perceive the same quality, which is decided by the
bit-rate of the encoding, independently of their reception ca-
pacity.

Better adaptation to receiver reception capacities can be
obtained if the number of source encodings is increased [1].
This technique is referred to as replication. The receivers are
assigned to different multicast groups, each group receiving
one source encoding at a particular bit-rate. A trade-off ex-
ists between the level of receiver reception capacity accom-
modation and bandwidth efficiency. This trade-off is con-
trolled by the number of multicast groups, which in practice
is constrained by issues such as storage capacity for stream-
ing applications and encoding complexity for live communi-
cation applications. In this paper, we study the optimization
of system performance for a trade-off specified by the number
of multicast groups. Specifically, we optimize the bit-rates
of the source encodings analytically, with respect to the ex-
pected distortion over all receivers, in the limit of a large
number of multicast groups. We also study the overhead
incurred by the assumption used.

A key aspect of the problem is the time variance of the
transmission system. Variations of network load, imperfec-
tions in the receiver reception capacity estimation and the
process of receivers joining and leaving the transmission ses-
sion give constantly changing solution requirements. There-
fore, finding an analytic expression for the optimal bit-rates

of the source encodings is essential, as it allows for fast adap-
tation to the current state of the system.

Since time variance is important, we assume in our work
that receiver reception capacities are realizations of an un-
derlying stochastic variable. To the best of our knowledge,
this approach to multicast rate optimization has not been
investigated so far. Our assumption is supported by results
from network capacity estimation literature, e.g., the work
by Paxson [2] and Dovrolis et al. [3]. Existing multicast rate
optimization solutions are based on the assumption that re-
ceiver reception capacities are deterministic, e.g., [4-6]. Yang
et al. [4] first solved the problem of rate optimization, with
respect to a general definition of receiver utility, for deter-
ministic receiver reception capacities. Their solution is in
the form of a dynamic programming algorithm. For reliable
channels, the complexity of the algorithm grows linearly with
the number of multicast groups and quadratically with the
number of receivers. Recognizing the limitation of this solu-
tion in a practical system, Yousefi’zadeh et al. [5] decreased
the complexity for a specific utility function. Both of these
solutions are incapable of handling receiver capacity uncer-
tainties. We quantify the overhead caused by erroneous ca-
pacity estimation for the algorithm by Yang et al. and show
that it cannot be neglected. Further, since the solutions are
in the form of algorithms, their adaptivity to the current
system state is dependent of the computational complexity
assigned to the system optimization.

The optimization objective is an important aspect of the
problem formulation. Maximization of the sum of receiver
utilities was used in [4,5]. The receiver utility is defined as
general class of functions that is dependent of the receiver re-
ception capacity and the rate at which data is received. Liu
et al. [6] maximize the sum of receiver specific functions that
vary linearly with the receiving rate. In our work, we use the
distortion as the measure of performance. By doing so, we
assume that receivers are interested in the least absolute dis-
tortion, independently of their own reception capacity. We
characterize the distortion with the distortion-rate function
of the encoder.

A natural extension of the work proposed herein, is to
include the scenario of an unreliable network. For complete-
ness, we note that the problem of rate optimization for mul-
ticast over unreliable networks has not been solved. The
authors of [4, 5] constrain their rate optimization problem
by loss tolerance, defined as the largest loss rate a receiver
can tolerate. However, the loss rate alone is not enough to
characterize video quality [7, 8], why these solutions cannot
be applied to the most relevant case of multicast. Another
approach to combating the unreliable network is to utilize
forward error correction. This approach is used in [9,10],
but the problem of rate optimization is not explicitly solved.

It has been noted in existing literature, e.g., [1], that
the availability of an embedded encoder at the sender can
increase the bandwidth efficiency for multicast with several
groups. Transmission of the redundancy between the source
encodings in replication can be avoided if each layer of the
embedded encoder is assigned to a separate multicast group.
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The receivers can then subscribe to the desired number of
multicast groups to obtain the best quality for their recep-
tion capacity. This setup is called layered multicast. Kim
and Ammar [11] studied this possibility, given the notion
that embedded coding in general incurs an overhead. The
solution that we propose is also applicable to layered multi-
cast. We show this by formulating the problem in accordance
with other authors [4-6].

The paper is organized as follows. In Section 2, we intro-
duce the notation and present the problem formulation. The
analytical solution to the problem, optimal asymptotically
in the number of multicast groups, is presented in Section 3.
Section 4 presents simulation results. Concluding remarks
are found in Section 5.

2. PROBLEM FORMULATION

In this section we introduce the notation and present the
rate optimization problem formulation. We consider multi-
cast of a video source, although the problem is applicable to
any source for which the distortion-rate performance of its
encoder is known.

Consider the multicast of a video source, modeled as a
stochastic process X. Let d(r) represent the distortion ob-
tained when the source is encoded with a given encoder at
the bit-rate r. The analysis of this paper can be applied
to any distortion-rate function. We choose the empirical
distortion-rate model for video, first introduced in [12],

0
T—Ro

d(r) = + Do. (1)

The distortion is measured in terms of the MSE and 6, Ry
and Do are model parameters. We assume that the model
parameters can be chosen such that the model represents
the performance of an embedded coder as well. This is true
if the embedded coder refines the quality independently of
the distribution of rate between layers. We point to [13] for
important results on successive refinement in general and
to [14,15] for video in particular.

The multicast is set up using I streams with rates s;,
i € {1,...,I}. The streams are coded either indepen-
dently or hierarchically. In the case of independent coding,
replication, each receiver subscribes to one multicast group,
i, and, thus, receives stream i. In the case of hierarchical
coding, each receiver subscribes to several multicast groups,
{1,...,4}, and receives streams {1,...,4}.

The total number of receivers is J. FEach receiver
is connected to the sender over the network path P;,
j €{1,...,J}, which consists of a number of network links.
The link that has the lowest available transmission capacity,
as governed by the total transmission capacity and the cur-
rent link load, is denoted the bottleneck link. We define the
reception capacity, c;, of receiver j as the available capacity
of the bottleneck link of network path P;. The reception
capacity is an upper bound on the (accumulated) rate that
the receiver may subscribe to. We let c¢; be a realization of
a stochastic variable C; with the probability density func-
tion fc;(c), which in general is multimodal [3]. Further, we
let fc(c) denote the underlying probability density of the
reception capacities of all receivers, such that the reception
capacity of any receiver is a realization of the stochastic vari-
able C, distributed according to

~l=

J
fo(e) == fo;(e). (2)

Since the multicast paradigm is made possible by the fact
that the paths from the sender to the receivers share common

links, it is natural to assume that some of the receivers share
their bottleneck links. Hence, fc(c) is in general a mixture
of multimodal distributions, with component weights that
are dependent on the number of receivers sharing the same
bottleneck link.

Each receiver subscribes to a subset of the available mul-
ticast groups, receiving the (accumulated) assignment rate
r;. We let r; be the output of the assignment function

ry = C_L(S,Cj), (3)

where s denotes the set of all stream rates, s = {s;}/_;.
In the case of replication, r; is confined to the alphabet
{0}U{s;:i=1,...,I}. In the case of embedded coding, ;
is confined to the alphabet {0} U{} ' _ si:i=1,...,I}.
Hence, for a given choice of stream rates, the assign-
ment rates r; can take I + 1 possible values from the set
r={0}U{r:}_,. As r is a deterministic mapping of s, we
introduce, for notational purposes, the equivalent assignment
function

v =alr.c;). (4)

The subset of streams assigned to receiver j is chosen
such that the distortion for that receiver is minimized. Note
that the cardinality of the subset is constrained to one if
replication is used. Since the distortion-rate performance
of the encoder is a monotonically decreasing function, the
subset is chosen such that r; is as large as possible. Hence,

r; = a(r,¢j)
={ri:ri <c¢; <Tiy1,mi €T} (5)

The objective of the rate optimization problem is to min-
imize the expected distortion of a receiver by choosing the
optimal stream rates s, or, equivalently, the optimal assign-
ment rates r. We write the minimum mean distortion as

d* = min E[d(a(s, C))]

S

= min E[d(a(r, C))]

where we defined the cell distortion

@:/mﬁmMMMc )

i
and rr41 = oo.

3. ANALYTICAL RATE OPTIMIZATION

This section solves the rate optimization problem defined
in Section 2. We begin by relating the rate optimization
problem to quantization theory. Then, we use the common
quantization theory assumption of small quantization cells
to provide an analytical solution for the optimal assignment
rates.

The optimization problem in (6) is equivalent to the
optimization problem of scalar source quantization. Using
quantization theory terminology, we recognize the source C,
characterized by the probability density function fc(c), the
quantization cell ¢ with boundaries r; and 7,41, the recon-
struction point 7; of cell ¢ and the distortion function d(-).
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Hence, the rate optimization problem in multicast is equiv-
alent to the problem of scalar quantization of the stochastic
source C, optimized for minimum distortion. Throughout
this section, we confine ourselves, for convenience, to using
terminology from quantization theory.

Let us denote the quantization cell width by A;,

Ai =Ti+1 — 7. (8)

The assumption that the quantization cell width is small,
such that the probability density within the cell can be as-
sumed constant, was first introduced by Bennett in his classic
paper from 1948 [16]. This assumption is often referred to
as the high-rate assumption in quantization theory. Using
the high-rate assumption, we motivate approximations that
make the problem analytically tractable.

The distortion within a cell can be approximated with a
function that, instead of being dependent of the reconstruc-
tion point of the cell, i.e., r;, is dependent of the quantization
variable ¢ and the cell width A;. This is done by assum-
ing that fc(c) is constant and d(-) is linear within a small
neighborhood of the cell, an assumption that is true asymp-
totically in the number of streams. For these assumptions,
we show in Appendix A that the distortion of cell i can be
written as

Tit1 1
d; ~ / d(c— iAi)fc(c) de. 9)

The quantization cell width is approximated as a function,
A(c), of the quantization variable ¢, such that

A(ry) = As. (10)

The inverse of A(c) then represents the density of recon-
struction points in a unit interval. We denote this density

by
gr(c) = 1/A(c). (11)

The total number of non-zero reconstruction points, I, puts
a constraint on the reconstruction point density

/+ gr(c) de = 1. (12)

Using the approximations of (9), (10) and (11), and
the definition of (1), we rewrite the problem formulation to
an optimization problem of the reconstruction point density
gr(c), yielding

I

Tit1
d* = mran/r d (c— %Al) fc(c) de

1=0 i

. 0

The minimum distortion in (13), under the con-
straint (12), can be found by applying the method of La-
grange multipliers. The Lagrangian that is to be minimized
becomes

A= /]R<+ (c;g;{f(c)RofC(c) + /\gR(c)> de, (14)

where ) is a strictly positive Lagrange multiplier. The Euler-
Lagrange equation gives us the implicit solution. We set

the partial derivative of the integrand of (14) with respect
to gr(c) equal to zero and solve for gr(c). This yields the
optimal reconstruction point density

5 £ /0fc(c)/2)

gile) = TV S (15)

where A is chosen such that (12) is satisfied.

To obtain the optimal reconstruction points r* from the
optimal reconstruction point density gz (c), we use the com-
panding approach, first introduced for scalar quantization
in [16]. Companding is the implementation of non-uniform
quantization using the setup of a non-linear transform fol-
lowed by a uniform quantizer. For the case of scalar quanti-
zation, companding does not incur any loss of generality [17].

Let us define a compressor h as a monotonically increas-

ing function
v = h(o), (16)

that maps ¢ to 7 in the interval [0, 1]. The compressor is such
that the optimal quantization cells in the v domain are all of
equal width. Using the relation between a random variable
and its transform by a monotonic function, we rewrite the
reconstruction point density as

9r(0) = gr (h(e)) | 220 |

(17)

where we used that gr(y) = I. Reevaluating the Euler-
dh(c)
dc

, we get the following relation between the optimal

reconstruction point density gi(c) and the optimal compres-
sor h*(c)

Lagrange equation for gr(c) =1 } , and solving for

|28t
dc

R*(c)=T1" /c gr(c) de. (18)

(oo}

The optimal quantization cells are found by expanding
the optimal quantization cells in the companded domain with
the inverse of (18). The optimal reconstruction points are
the points for which the distortion within the cells is mini-
mized and the quantization cell widths are not altered. For
cells i € {2,...,1}, we set the reconstruction points to the
lower boundary, since choosing any other point would re-
sult in non-optimal quantization cell boundaries according
to the assignment function (5). This is not the case for the
first cell. Namely, choosing any reconstruction point within
the cell effectively divides the cell into two subcells. The first
subcell has the reconstruction point at rate zero, ro = 0 and
all receivers assigned to ro are excluded from the multicast.
The second subcell has the reconstruction point, ri, at its
lower boundary. We set r1 to the value that minimizes the
expected distortion within the first cell, i.e.,

ry = argmin/ 1d(O)fc(c) dc+/ 2d(r1)fc(c) de. (19)

T1 T1

4. SIMULATION RESULTS

In this section, we present the results from conducted simu-
lations. We begin by providing the asymptotically optimal
rates r* to one specific multicast scenario. Then, we eval-
uate the performance of the competing solution of Yang et
al. and compare it to the asymptotically optimal solution
for three different multicast scenarios, characterized by the
receiver reception capacity distribution. The solutions are
evaluated for I € {2,...,10} multicast groups.
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All simulations were performed for the foreman CIF
video source at 30 frames per second. We used the H.264
reference software, version JM 12.2, for which the model pa-
rameters of (1) were found to be 6 = 7086, Ry = 18.8 and
Doy =28.

As described earlier, cf. Equation (2), the underlying dis-
tribution of receiver reception capacities C' can be assumed
multimodal. For the purpose of our result illustration, we
chose to let C' be distributed according to a mixture of Gaus-
sians with two components. More specifically, we chose

fele) = %./\/(4007 2000) + %N(?OO, 2000), (20)

where the unit of the variable is kbps. This distribution
of C' is plotted in Figure 1, along with the optimal recon-
struction point density g5 (c) and compressor h*(c) for I = 4
streams. As can be seen, the optimal reconstruction point

Optimal compressor
1 T T T T

*
H

iy iy
*

0 * " i i i i i
100 200 300 400 500 600 700 800 900 1000

Optimal reconstruction point density
0.015 T T T T T

*
H

0 i % iy

100 200 3000 400 500 600 700 800 900 1000

6 x107° Receiver reception capability density
T T T T T T T

100 200 300 400 500 600 700 800
¢

900 1000

Figure 1: The distribution of receiver reception capacities
from (20), the optimal reconstruction point density and the
optimal compressor. Reconstruction points are illustrated
with stars.

distribution follows the distribution of receiver reception ca-
pacities. However, due to the fact that the distortion func-
tion is proportional to the inverse of the reception capacity,
most reconstruction points should be placed at low recep-
tion capacities. The optimal compressor is used to find the
reconstruction points, which are illustrated with stars.

To compare competing methods for multicast rate allo-
cation, we define the distortion overhead as

_ Bld(a(r,©) ~ d{a(s*",©))
=T B oy Y

w(r, rc'pt)

Here, r is the vector with assignment rates obtained from
the specific multicast rate allocation method, 7°P* is the vec-
tor with optimal stream rates and the expectations are with
respect to C.

We used the distortion overhead definition to evaluate
the performance of two rate allocation methods. The first
was the asymptotically optimal rate allocation proposed in
this paper. The second was the rate allocation algorithm
proposed by Yang et al. in [4]. We denote the solutions of
the two methods with r* and rY¥%"9, respectively. As the
optimal rates r°P* are not known in general, we evaluated

the distortion overhead for r°?* = #°P* the stream rates
resulting from any of the two methods in our simulations,
that evaluated to the least distortion.

We performed the simulations for three multicast scenar-
ios, characterized by the probability density functions of the
receiver reception capacities C. These probability density
functions used were the uniform, the Gaussian and a bimodal
mixture of Gaussians. For all distributions, we limited the
precision of realizations and the rate assignment to 1 kbps.
Since r¥ "9 depends on the realization of receiver reception
capacities, we ran the algorithm 200 times per distribution
and number of multicast groups, for 1000 receivers each time.
The number of multicast groups was 10 at its largest, due to
the high computational complexity of the algorithm of Yang
et al. Simulation results are shown in Figure 2.

Uniform distribution of C

10°<#>7—‘_<777774,*;,‘77,
N TN ST T T T

o PR e s g
& P N N 7
fu 10 N NS ]
o - T T o D= EiZIiZizioizi=izi=z = =
- - R |
3 4///<

107 1
107 .

2 3 4 5 }s 7 8 9 10

() fco(e) =U[200,900]

Gaussian distribution of C

(b) fole) = N(550,5000)

Mixture of Gaussians distribution of C

(c) fole) = $N(400,2000) + $N/(700,2000)

Figure 2: The distortion overhead, plotted as a function of
the number of multicast streams, for the three multicast sce-
narios. Results for the asymptotically optimal rates r* are
given by the solid curves with circles. Zero distortion over-
head, as for the Gaussian distribution and I = 7 streams, is
indicated by the lack of a circle. The dashed curves represent
the first through fifth quintile of the distortion overhead for
r¥ 99 from bottom to top, respectively.

The distortion overhead is, for the asymptotically opti-
mal rates r*, given by the solid line with circles. Zero dis-
tortion overhead is indicated by the lack of a circle. The
distortion overhead for r¥ "9 is in the plots illustrated by
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the first through fifth quintile. Hence, the distortion over-
head was in 20%, 40%, 60%, 80% and 100% of the 200 runs
smaller than indicated by the dashed curves, from bottom
to top, respectively.

We see that the distortion overhead, w(r*,#°**), for the
asymptotically optimal rates r* was smallest for the uniform
distribution of C. This is consistent with the fact that fc(c)
in this case is constant within the cells as was assumed in
the derivations. As expected, w(r*,7°?") decreased with an
increasing number of streams. The maximum value of the
distortion overhead for r* was always well below 10%.

For the solution proposed by Yang et al., we see that
the largest distortion overhead, w(r® ™ r"pt ), obtained
in the simulations was larger than 100% This confirms
our hypothesis that optimization for a realization of re-
ceiver reception capacities can incur large distortion over-
head. Compared to our method, for over 80% of the runs
w(r™, 7Pt < w(r¥e™9 #°Pt) Naturally, since r* is asymp-
totlcally optimal, this figure increases with the number of
multicast groups, as seen in the figure.

5. CONCLUSIONS

We have developed a theory for analytically finding the
stream rates for video multicast. The theory is based on
the notion, confirmed by work in networking literature, that
the receiver reception capacities should be modeled as real-
izations of a continuous stochastic variable. The rates are
optimal asymptotically in the number of multicast groups.
Simulation results show that the distortion overhead is low
when this assumption is not valid and that it decreases with
the number of multicast groups. The fact that the rates
are obtained analytically makes the solution well suited for
practical multicast scenarios, which is not the case for prior
art. Further, we have compared our method to the state of
the art, which is iterative optimization for a specific realiza-
tion of receiver reception capacities. Our solution performs
better in over 80% of the cases for small numbers of multi-
cast groups. This figure approaches 100% with an increasing
number of groups.

APPENDIX A

As described earlier, the high-rate assumption implies that,
asymptotically with increasing rate, the source distribution
fc(c) is constant and that the distortion d(c) is linear within

a neighborhood of each cell. For cell i and ¢ € [r;— %Ai, Tit1],
we write

fe(e) = fo(rs) (22)
and

d(c) = m; + kic. (23)

Then, it follows that the cell distortion can be written as

Ti+1
d; = / d(r;) fc(c) de

i

~ fo(ri) (mi + kiri) A

= fo(rs) (miAi + %ki(rfﬂ —r) - %kiA?)

= fo(ri) /T'i+1 (mz + ki(e— %Az)) de

i

Ti+1 1
~ / d(c— iAi)fc(c) de, (24)

where we used A; = r;;, — 7.
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