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ABSTRACT

A new constant modulus algorithm and two of its variants are

presented for blind equalisation of complex-valued communica-

tion channels. The proposed algorithm is obtained by solving

a novel deterministic optimisation criterion which comprises

the dispersion minimisation of a priori as well as a posteriori

quantities leading to an update equation having a particular

zero-memory continuous nonlinearity. The convergence analysis

of a variant of the proposed algorithm is presented.

I. INTRODUCTION

Adaptive equalisation techniques are of great importance in

modern high-efficiency communication systems. Conventionally,

an adaptive equaliser is employed with the aid of a training

sequence known to both the transmitting and receiving ends. This

training session, however, can be rather costly or even unrealistic

in certain applications such as asynchronous wireless network. To

improve the overall throughput of a transmission system, the use

of a training period is avoided by performing blind equalisation

on the receiver side. Among all algorithms for blind equalisation,

the constant modulus algorithm (CMA) [1], [2] plays a vital role.

One of the most important features of CMA is that it can equalise

constant modulus as well as non-constant modulus (like QAM)

signals.
1 The cost function CM(q, 2) can be written as [1]:

min
wn

E
[
(|yn|q − γq)2

]
(1)

The criterion (1) minimises the dispersion of the modulus of a

priori output yn away from a statistical constant γ. The cost

yields the following stochastic gradient algorithm:

CMA(q, 2): wn+1 = wn + µxn(γq − |yn|q)|yn|q−2y∗
n (2)

where the dispersion constant γq (which also serves as an

equaliser gain) is obtained as:

γq =
E[|a|2q ]

E[|a|q] (3)

1Assuming a time-invariant channel, the channel and equaliser

outputs at the Baud rate are given by xn =
∑K−1

k=0 hkan−k +νn and

yn = w
H
n xn, respectively, where {hk} is the (K-tap FIR) channel

impulse response, wn is the (N-tap FIR) equaliser vector at time

instant n, an and νn are the channel input and additive noise sample,

respectively, at time instant n, xn is the regressor, superscripts T

and H denote transpose and Hermitian transpose, respectively, and

subscripts R and I denote the real and the imaginary parts of the

complex entity, respectively.

The stochastic gradient algorithm (2) drops the expectation

operator and minimises the resulting cost function by performing

one iteration per sample period. It is interesting to note that only

two members of this family, namely CMA(1, 2) and CMA(2, 2),

have been widely and till recently discussed and studied (say

[3], [4], [5], [6] and the references therein). The performance

of CMA(q, 2) for q > 2 has been found pretty dissatisfactory

especially for high-order non-constant modulus signals. In [7,

page 35], describing the performance of CM(q, 2), Bellini states

that

The value q = 2 provided faster convergence than

q = 1. The performance of q = 3 was disappointing.

This behaviour is due to the mismatch between the signal

constellation and CM cost function; as a result, the CMA update

equation causes the adaptive weights to jitter (fluctuation noise)

about their optimum settings even if the perfect equalisation

is achieved [8]. This jitter becomes even more severe when

q becomes greater than 2. Based on the jitter analysis carried

out for CMA(2, 2) in [8], we obtain a generalised result for

CMA(q, 2) that:

Jitter Noise ∝ µ2
E

[
(γq − |yn|q)2|yn|2q

]
(4)

Notice from Eq. (4) that there is an increased jitter-noise for

larger values of q. There is yet another point to mention. Refer

to Fig. 1, where the error-function of CMA(q, 2), y|y|q−2(γq −
|y|q), has been plotted for a set of values of q for some real-

valued signal. Observe in Fig. 1 that for larger values of q,

the error-function gets aggregated at the larger values of |y|
and leaves a dead-zone for smaller values of |y|. Thus an

equaliser implementing CMA(q, 2) for a large q virtually makes

no adaptation for small values of |y|. We believe that the worse

convergence behaviour of CMA(q, 2)|q>2 is also due to this

phenomenon.

In the next section, we aim to obtain a newer form of CMA

with reduced jitter-noise and even better error-function.

II. PROPOSED ALGORITHMS

After having the equaliser estimate wn, we want to adapt it by

considering the following instantaneous optimisation problem:

min
wn+1

(|wH
n+1xn|q − γq)2 (5)

where we denote w
H
n+1xn = sn as the a posteriori output of the

equaliser. It is obvious that we can minimise this cost function

perfectly, leading to |sn| = γ, ∀q ≥ 1, while leaving wn+1

largely undetermined. To fix the degree of freedom in wn+1,
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Fig. 1. Error-function of CMA(q, 2) for q = 2, 3, · · · , 10.

we impose that wn+1 remains as close as possible to its prior

estimate wn, while satisfying the constraints imposed by the new

data, leading to minwn+1
‖wn+1−wn‖2

2 subject to |sn|q = γq .

Using Lagrange multipliers, we may formulate our optimisation

problem as follows:

min
wn+1

{
‖wn+1 − wn‖2

2 + λ(|sn|q − γq)
}

(6)

Notice that, for q = 2, (6) becomes the same cost which had

been used in [9] to obtain a sort of normalised constant modulus

algorithm. Consider a normalised adaptive algorithm wn+1 =
wn +µ(ϕ[yn]− yn)∗xn‖xn‖−2

2 , where ϕ[yn] is an appropriate

blind estimate of the desired signal based on yn. We obtain

sn = w
H
n+1xn = µϕ[yn] + (1 − µ)yn. (7)

This shows that the a posteriori output sn is a convex combi-

nation of the a priori output yn and the blind estimate ϕ[yn]
(this observation has been borrowed from [10]). Hence, sn will

be closer to the ϕ[yn] than yn (where the step-size µ ∈ (0, 1]
controls the extent to which sn approaches ϕ[yn]). It provides

us a heuristic idea that better blind equalisation algorithms may

be obtained if both a posteriori and a priori outputs are forced

to come closer to the blind estimate. We can develop a cost

function to minimise some joint dispersion of moduli of sn and

yn, leading to a modified form of (6) as follows:

min
wn+1

{
‖wn+1 −wn‖2

2 + λ
(
|sn|t|yn|p − γt+p)}

(8)

t, p ≥ 1. For tractable derivation, we use t = 2 and p = 2q − 2
leading to

min
wn+1

{
‖wn+1 − wn‖2

2 + λ
(
|sn|2|yn|2q−2 − γ2q)}

(9)

Now we differentiate (9) with respect to wn+1 and set the result

equal to zero, we get

w
∗
n+1 − w

∗
n + λx

∗
nx

T
nw

∗
n+1|wH

n xn|2q−2 = 0 (10)

Transposing (10) and post-multiplying it with xn lead to

sn − yn + λsn|yn|2q−2‖xn‖2
2 = 0 (11)

Solving (11) yields into the optimum Lagrange multiplier, λ∗,

as given by

λ∗ = − 1

|yn|2q−2‖xn‖2
2

(
1 − yn

sn

)
(12)

and the corresponding update equation is

wn+1 = wn − λ∗s
∗
n|yn|2q−2

xn (13)

At each n, the hard constraint in (9) enforces

|sn|2 =

(
γ

|yn|

)2q

|yn|2 ⇔ sn =

(
γ

|yn|

)q

yn

Therefore the optimum Lagrange multiplier in (12) is

λ∗ = − 1

|yn|2q−2‖xn‖2
2

(
1 − |yn|q

γq

)
(14)

At this stage, partly motivated by the work in [9], we introduce

a factor of relaxation, η, in (14) to gain some control over the

convergence speed. It implies that the constraint on sn is now

retained as a soft constraint. By introducing η, we have a relaxed

Lagrange multiplier, λ∗,η , as given by

λ∗,η = − η

|yn|2q−2‖xn‖2
2

(
1 − |yn|q

γq

)
(15)

and the corresponding update equation is

wn+1 = wn + η
xn

‖xn‖2
2

(
1 − |yn|q

γq

)
s∗n (16)

By transposing and post-multiplying (16) with xn we obtain

sn =
yn

1 − η

(
1 − |yn|q

γq

)
(17)

Substituting (17) in (16) we obtain

wn+1 = wn +
xn

‖xn‖2
2

η

(
1 − |yn|q

γq

)

1 − η

(
1 − |yn|q

γq

) y∗
n. (18)

We denote (18) as soft constraint satisfaction constant mod-

ulus algorithm of order q (SCS-CMAq). For the given signal

{a}, a small relaxation-factor η and the order q, the value of the

dispersion constant γq for SCS-CMAq is obtained as follows:

γq =

(
1 + 2η

1 + η

)
E[|a|q+2]

E[|a|2] . (19)

The computational complexity of the proposed algorithm (18)

is little higher than that of the conventional CMA. This complex-

ity can be reduced by observing that, with a suitable choice of η
and successful convergence, E[η|1−|yn|q/γq |] ≪ 1, and can be

removed from the denominator of (18). This observation leads

to the following two simplified variants of (18):

SCS-CMAq-I: wn+1 = wn + µ
xn

‖xn‖2
2

(γq − |yn|q) y∗
n (20)

and

SCS-CMAq-II: wn+1 = wn + µ xn (γq − |yn|q) y∗
n (21)

where µ is a suitable step-size and (21) is the unnormalised

version of (20). Also, comparing (21) and (2), we notice that
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they are similar only for q = 2. The dispersion constant γq for

(20) and (21) is obtained as

γq =
E[|a|q+2]

E[|a|2] . (22)

Notice that the jitter-noise exhibited by SCS-CMAq-II is given

as

Jitter Noise ∝ µ2
E

[
(γq − |yn|q)2|yn|4

]
(23)

which is much smaller than that of CMA(q, 2) for q > 2. Also

notice in Fig. 2 that the error-function of SCS-CMAq-II exhibits

a highly admissible form for large values of q.
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Fig. 2. Error-function of SCS-CMAq-II.

III. CONVERGENCE ANALYSIS OF SCS-CMAq-II

The convergence behaviour of stop-and-go2 (selective) update

CMA(2, 2) has been studied by Rupp and Sayed [11]. They

showed that for transmitted signals with constant modulus γ,

the equaliser implementing CMA(2, 2) is capable of making its

outputs to lie within the circle of radius γ
√

c infinitely often,

for some value of c that is slightly larger than one. Due to the

similarity which exist between CMA(q, 2) and SCS-CMAq-II,

we intend to carry out the similar analysis for SCS-CMAq-II to

gain some insight into its convergence behaviour. At the end, we

would be able to show that larger value of q has an advantageous

effect of forcing c to come close to unity.

A. Stop-and-Go (Selective) Updating

The corresponding active update steps of SCS-CMAq-II have the

form 



if |yn| ≥ γ
√

c
then k = k + 1,

ek = (γq − |yk|q) yk,
wk+1 = wk + µke∗kxk.

(24)

Assume we run the above algorithm infinitely often (i.e., n →
∞), and let K denote the maximum number of active updates

that occurred in the process. We now prove that, by properly

2Notice that this stop-and-go principle is devised for the sake

of convergence analysis in [11] and it has nothing to do with

the conventional Bussgang-type stop-and-go adaptation strategy as

appeared in [12] and [13].

designing the step-size sequence, K can be made finite, which

in turn means that the condition |yn| < γ
√

c will hold infinitely

often. Let w denote the weight vector of the optimal equaliser

and let zk = w
H
xk = ak−D is the optimal output for some D

[so that |zk| = γ]. Define further the a priori and a posteriori

estimation errors

ea
k = zk − yk = w̃

H
k xk

ep
k = zk − sk = w̃

H
k+1xk

(25)

where w̃k = w −wk. We introduce a complex-valued function

h[z1, z2]:

h[z1, z2] ,
z1|z1|q − z2|z2|q

z1 − z2
, (z1 6= z2) (26)

Using h[·, ·], we obtain (refer to [11])

ek = (h[zk, yk] − γq) ea
k (27)

ep
k =

(
1 − µk

µk

[h[zk, yk] − γq]

)
ea

k (28)

where µk = 1/‖xk‖2
2 denotes the reciprocal of the input energy

at the iteration k. In section II, we have pointed out that the a

posteriori output sn (or sk) is closer to the blind estimate than

a priori output yn (or yk), which requires that |ep
k| < |ea

k|. To

ensure it, we need to select the step-size sequence µk so as to

guarantee for all k
∣∣∣∣1 − µk

µk

[h[zk, yk] − γq]

∣∣∣∣ < d < 1 (29)

for all possible combinations of zk and yk, the value of q and

for some positive scalar d. Let hR[zk, yk] and hI [zk, yk] denote

the real and imaginary parts of h[zk, yk], respectively; from (29)

we obtain

µ2
k

µ2
k

(hI [zk, yk])2 +

(
1 − µk

µk

[hR[zk, yk] − γq]

)2

< 1 (30)

The values of µk for which (30) can be ensured, we have the

following theorem:

Theorem 1 [Stop-and-Go SCS-CMAq-II]: Assume yk stays

uniformly bounded from above for all k, say

γ
√

c ≤ |yk| ≤ Pγ < ∞ (31)

for some P ≥ √
c > 1. Choose a positive number βo in the

interval
36P 2q − ǫ2m

4/q
o

36P 2q + ǫ2m
4/q
o

< βo < 1. (32)

and compute an αo via

αo =
6(1 − βo)P q

ǫ m
2/q
o

. (33)

Choose further the step-size µk for the active update from within

the interval

(1−βo)
1

‖x‖2
2

2

qǫ m
2/q
o γq

< µk < αo 1

‖x‖2
2

1

(q + 1)P qγq
(34)

It then holds that K < ∞. That is, |yn| < γ
√

c holds infinitely

often.

Proof: The proof follows directly from [11] (where a stop-and-

go CMA(2,2) is analysed) and is thus skipped. However, proofs

of Equations (32)-(34) are provided in Appendix I.
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Remark 1: From Theorem 1, we can say that, for suitably chosen

step-sizes, the stop-and-go SCS-CMAq-II produces a sequence

of estimates yk that lies inside the circle of radius γ
√

c with

probability one.

Remark 2: We notice that the choice of µk is small and it

becomes even smaller for large values of q. However at the same

time, a larger q is beneficial in making c come close to unity.

From Appendix I, we have

c ,

[
min

r∈(0,1)

(
1 + rq+1

1 + r

)]− 2
q

+ ǫ (35)

Notice in Table I, the corresponding values of c are decreasing

monotonically and approaching unity with an increase in q.

TABLE I VALUES OF q AND c

q 1 2 3 4 5 6

c − ǫ 1.4571 1.3333 1.2635 1.2185 1.1868 1.1634

q 7 8 9 10 11 ∞
c − ǫ 1.1452 1.1308 1.1190 1.1092 1.1009 1

IV. SIMULATIONS

In simulations, a complex-valued 7-tap transversal equaliser

is used and it is initialised so that the center tap is set to one

and other taps are set to zero. The propagation channel used

in the simulation is a typical voice-band telephone channel and

is taken from [12]. The signal to noise ratio (SNR) is taken

as 30dB at the input of the equaliser. The residual ISI [14]

is measured for (circular) 8-QAM signaling and compared as

performance parameter. Signal alphabets are taken from the set{
±1 ± , 1√

2
(1 +

√
3)(±1± )

}
. Each trace is the ensemble

average of 500 independent runs with random initialisation of

noise and data source. Notice that the values of the step-sizes

are taken to be constant in all cases and are also mentioned in

Fig. 3.

The performance of SCS-CMAq-II has been studied for q =
1, 2, 4, 6 and 8. As expected and demonstrated in Fig. 3, the

performance gets better in terms of steady-state residual ISI when

larger q is used. Fig. 3 also depicts convergence trace for the

conventional normalised CMA (NCMA); notice that, except for

q = 1, NCMA performed inferior to SCS-CMAq-II. In Fig. 4,

we depict scatter diagrams for last 400 equalised symbols where

it can be noticed that the clusters gets more aggregated when

larger q is used. Moreover, with its capabilities to yield lower

ISI floor and aggregated constellation, SCS-CMAq-II facilitates

a reliable switch to decision-directed (tracking) mode from blind

(acquisition) mode.

V. CONCLUSION

A new constant modulus algorithm and two of its variants

have been presented for blind equalisation of complex-valued

communication channels. The proposed algorithm has been ob-

tained by solving a novel deterministic optimisation criterion,

based on the dispersion minimisation of a priori as well as

a posteriori quantities leading to an update equation having

a particular zero-memory continuous nonlinearity. Furthermore,

its convergence analysis and some simulation results have been

presented.
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Future work will involve considering various equalisation

applications (like block-processing, over-sampling, a DFE or

MIMO-DFE in particular).

APPENDIX I

Let α and β be any two positive numbers satisfying

α2 + β2 < 1 (36)

We need to find a µk that satisfies

∣∣∣∣
µk

µk

hI [zk, yk]

∣∣∣∣ < α (37)

and ∣∣∣∣1 − µk

µk

(hR[zk, yk] − γq)

∣∣∣∣ < β (38)
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From [11], it is straightforward to prove that3

hR[zk, yk] ≥ γq
(
1 + ǫ m2/q

o

)q/2

,

|hI [zk, yk]| < γq(1 + q)P q.

We can satisfy (37) and (38) by selecting µk such that

1 − β

‖x‖2
2

γ−q

(
1 + ǫ m

2/q
o

)q/2

− 1

< µk <
α

‖x‖2
2

γ−q

(q + 1)P q − 1

Notice that for 0 < ǫ ≪ 1 and q ≥ 1, we can write

(
1 + ǫ m2/q

o

)q/2

≈ 1 +
q

2
ǫ m2/q

o

Also notice that P ≥ √
c > 1 and q ≥ 1 give

1

(q + 1)P q
<

1

(q + 1)P q − 1

we found a simpler bound on µk as given by

1 − β

‖x‖2
2

2

qǫ m
2/q
o γq

< µk <
α

‖x‖2
2

1

(q + 1)P qγq
(39)

which gives

1 − β

α
<

qǫ m
2/q
o

2(q + 1)P q
<

ǫ m
2/q
o

2P q
(40)

Let for some {αo, βo} we have

1 − βo

αo
=

1

3
· ǫ m

2/q
o

2P q
=

ǫ m
2/q
o

6P q
(41)

Then, {αo, βo} satisfy (40). Substituting into (36), we see that

βo must be such that

(
6(1 − βo)P q

ǫ m
2/q
o

)2

+ (βo)2 < 1

If we find a βo that satisfies this inequality, then a pair of

{αo, βo} satisfying (36) and (40) exists. So consider the fol-

lowing quadratic function

g(β) =

(
6(1 − β)P q

ǫ m
2/q
o

)2

+ (β)2 − 1.

It has a negative minimum and it crosses the real axis at the

positive roots

β(1) =
36P 2q − ǫ2m

4/q
o

36P 2q + ǫ2m
4/q
o

< 1, β(2) = 1.

Hence, βo can be chosen as any value in the interval

36P 2q − ǫ2m
4/q
o

36P 2q + ǫ2m
4/q
o

< βo < 1. (42)

For q = 2 and mo = 3/4, the above result (42) can be found

consistent with [11, Equation (51)]. The bounds on µk are thus

justified. �

3Constants ǫ and mo are related to c as given by c , m
−2/q
o + ǫ;

where mo = min
r∈(0,1)

(
1 + rq+1

1 + r

)
and 0 < ǫ ≪ 1.

APPENDIX II

To compute γq in (18), we need to solve the following [7]:

E




|a|2
(

1 − |a|q
γq

)

1 − η

(
1 − |a|q

γq

)


 = 0 (43)

Since η ≪ 1, we use the approximation (1 − x)−1 ≈ 1 +
x (where |x| ≪ 1) to get

E

[
|a|2

(
1 − |a|q

γq

) (
1 + η

(
1 − |a|q

γq

))]
≈ 0 (44)

Further we get

E
[
|a|2

]
(1 + η)γq − E

[
|a|q+2] (1 + 2η) + η

E
[
|a|2q+2

]

γq
= 0

(45)

Again due to η ≪ 1, we drop the last term in (45), and solve

for the rest to get (19).
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