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ABSTRACT

This paper presents several algorithms for joint estimation of the
target number and state in a time-varying scenario. Building on the
results presented in [1], which considers estimation of the target
number only, we assume that not only the target number, but also
their state evolution must be estimated. In this context, we extend
to this new scenario the Rao-Blackwellization procedure of [1] to
compute Bayes recursions, thus defining reduced-complexity solu-
tions for the multi-target set estimator. A performance assessment
is finally given both in terms of Circular Position Error Probabil-
ity - aimed at evaluating the accuracy of the estimated track - and
in terms of Cardinality Error Probability, aimed at evaluating the
reliability of the target number estimates.

1. INTRODUCTION

Mahler’s finite set statistics (FISST) is a theoretically solid the-
ory which allows modeling multiple target situations as a Random
Finite Set (RFS), whose posterior belief density may be tracked
through the usual Bayes recursions to estimate the so-called multi-
target set [2]. FISST appeared a decade ago, but its direct applica-
bility relies on ad hoc approximations of the said recursions, and
in particular on Sequential Monte Carlo (SMC) algorithms [3] and
Probability Hypothesis Density (PHD) filters [4, 5]. The concept of
PHD filtering was developed to reduce the computational burden of
Bayes recursive filters, inherently exponential in the target number,
to linear [6, p. 571]. Unfortunately, PHD filtering relies on a set of
assumptions on the multi-target model and on the available obser-
vations which are not easily met in real applications.
SMC algorithms, conversely, are basically a method for approxi-
mating Bayes recursions through numerical integration and are in-
herently more flexible [3]. Unfortunately, however, the reliability
of such an approximation generally decreases as the number of tar-
gets present in the scene increases, which poses the problem of ef-
ficiently tracking a dense multi-target dynamic scenario through a
computationally feasible system. Recently, Vihola has developed an
efficient multiple target tracking SMC filter based on the concept
of Rao-Blackwellization [1, 7]. In general, Rao-Blackwellization
can be applied to SMC algorithms in which only some variables
are sampled, while the other are handled analytically: the only re-
quired assumption is that the state of each target evolves according
to a linear Gaussian model and that the observations are linear and
Gaussian, a common hypothesis in tracking applications 1.
Building on the results of [1], we introduce here a Rao-
Blackwellized Particle Filtering (RBPF) strategy for joint estima-
tion of an arbitrary multi-target set, i.e. of its cardinality as well
as for the evolution of the target states, and present a set of results
proving the ability of our procedure to cope with multi-target track-
ing.
The rest of the paper is organized as follows. In Section 2, the sig-
nal model is described. Section 3 reviews the Bayes recursive filter,
the RBPF and RFS estimators. Section 4 contains numerical results
and Section 5 concludes this paper.

1Non-Linear evolutions can in any case be dealt with through Extended
Kalman Filtering (EKF) or Unscented Kalman Filter (UKF)

Notation: Normal face letters denote scalar values; Lower (up-
per) boldface letters are used for column vectors (matrices); up-
per calligraphic letters are used for RFS; (·)T denotes transposi-
tion operation; E[·] represents statistical expectation; IN denotes
the identity matrix of size N; 0N denotes the N × N zeroes ma-
trix; diag(x) stands for the diagonal matrix with the column vector
x on its diagonal; det(Σ) is the determinant of the square matrix Σ;
Nc(x; μ,Σ) � 1√

det(2πΣ)
exp{− 1

2 (x−μ)T Σ−1(x−μ)}; if Xn is

a RFS at time n, then X1:n is the collection of RFSs from time 1 up
to n; |X | denotes the cardinality of X ; ‖ · ‖L denotes the L-norm;
δx,y is the Kronecker delta.

2. SIGNAL MODEL

In general, formal Bayes filtering is based on a dynamic state space
model, consisting of the following ingredients:
State Space The state space, X, defines all possible configurations

the physical model can be in. In our problem, the state space
X is the hyperspace of all finite subsets of a single-target state
space X0 = R

d [8].
Observation Space The observation space, Y, defines the informa-

tion available to the sensor. In our problem, the observation
space is the hyperspace of all singleton-or-empty sets of a space
Y0 = R

m.
Integration Mahler’s Multi-target calculus defines the concept of

set integral which will be exploited in our analysis [2].
Observation Model An observation model describes how a mea-

surement Yn is generated by an object having state Xn at time
tn. This corresponds to assigning a conditional density, i.e.
f (Yn|Xn). The conditional density of our model will be an-
alyzed in Section 2.1

Dynamic Model A dynamic model is, typically, a motion model
describing the evolution of an object state from time tn−1 to time
tn. It corresponds to a state-transition density, i.e. f (Xn|Xn−1).
The state-transition density of our model is analyzed in Sec. 2.2

2.1 Observation model

The observation model assumed in this article differs from the usual
scan-based model that is often used for radars, wherein the obser-
vation set consists of an RFS containing a measurement of all tar-
gets in the scene, with possibly some missed detection, plus clutter
measurements2. Here, it is assumed that the tracking system ob-
tains detection reports from independently operating sensors. Each
report consists of a singleton-or-empty set, i.e. it either contains
a measurement of one of the targets or is a false alarm. Alterna-
tively, it may be empty, meaning that the sensor did not detect any
target. As stated in [1], this model applies, e.g., to a network of
identical sensors with random scanning patterns: sensors scan the
whole surveillance area and, whenever a target is detected, a mea-
surement is sent to the tracking system, while a ”no detection” re-

2The algorithm we will present here can be easily generalized to the
radars observation model for a small number of targets and moderate clutter.
Unfortunately, the complexity will be exponential in the number of target
and measurement, which prevents any practical implementation.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



port is dispatched if no detection occurs. The reporting instants
are un-characterized and, thus, allowed to be irregular. Since the
time, tn say, of arrival of the nth report to the tracking system is a
continuous random variable, different observations from different
sensors do not overlap, whereby the tracking system processes the
observations sequentially. Denote Xn = {xn,1, . . . ,xn,N(n)} the set
of N(n) targets in the scene characterized by the single-target state
variable xn,k ∈R

d and denote Yn the observation set at time tn. The
assumptions done for the observation model are listed below:
• Each observation consists of a singleton-or-empty set, Yn. If

Yn = {yn}, then yn ∈ R
m is either a measurement of a target

or a false alarm. Moreover, if Yn = { /0} then sensors have not
produced any detection.

• The probability of detection is pD and it does not depend on the
target state. Since the sensors scanning pattern is random, each
target has uniform probability to be detected.

• Each sensor report contains a false alarm with probability pF .
In addition, the false alarms are assumed to be distributed ac-
cording to a false alarm spatial density fF (y).

• The model for a target-generated measurement is linear-
Gaussian, i.e.

f (yn|xn) = N (yn;Hnxn,Rn) (1)

for some known matrices Hn and Rn
The observation model can be easily characterized by an auxil-
iary variable cn which models the data association. Indeed, pro-
vided N(n) = |Xn| = K, cn takes on values in {0,1, . . . ,K} ∪�:
cn = � implies that no detection occurred, while cn = 0 indi-
cates that the observation comes from a false alarm. Finally, if
cn = k ∈ {1, . . . ,K}, then the observation Yn = {yn} has been gen-
erated by the kth target. Based on this model, we have [1]

f (cn
∣∣|Xn| = K) =

⎧⎨⎩
pF cn = 0
(1− pF )

(
1− (1− pD)K

)
/K 1 ≤ cn ≤ K

(1− pF )(1− pD)K cn = �
(2)

The characterization of the RFS Yn given Xn is based upon the
evaluation of the Belief Mass function, defined as [2, p. 152]

βYn
(S|Xn) = Pr(Yn ⊆ S|Xn) (3)

for all measurable S ⊂ R
m. The fundamental theorem of Multi-

target Calculus states that the conditional density can be obtained
as

f (Yn|Xn) =
δβYn

δYn
( /0|Xn) (4)

where δ/δYn denotes the set derivative operation with respect to
Yn [2, p. 150].
It can be easily shown that

βYn
(S

∣∣Xn,cn) =

{
PF (S) cn = 0
PYn

(S|xn,cn) 1 ≤ cn ≤ |Xn|
1 cn = �

(5)

where PF (S) �
∫

S fF (y)dy, PYn
(S|xn,cn) �

∫
S f (y|xn,cn)dy and

xn,cn is the target state that generates the observation. The con-
ditional belief can thus be evaluated as:

βYn
(S|Xn) = ∑

cn

βYn
(S|Xn,cn) f (cn

∣∣|Xn| = K) (6)

where K = |Xn| and f (cn
∣∣|Xn| = K) is given by eqs. (2). The cal-

culation of the set derivative of (6) yields the following conditional
density [1]

f (Yn|Xn) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− pF )(1− pD)|Xn| Yn = /0
|Xn|
∑
k=1

(1− pF )
(
1− (1− pD)|Xn|)/|Xn|

× f (yn|xn,k)+ pF fF (yn) Yn = {yn}
(7)

2.2 Dynamic model

The dynamic model is completely characterized by the multi-target
state transition density, f (Xn|Xn−1), which requires modeling
both the single-target dynamics and the birth-and-death process.
As anticipated, the single-target dynamic model is assumed to be
linear-Gaussian, i.e.

f (xn|xn−1) = N (xn;Anxn−1,Qn) (8)

The birth model is assumed to be a Poisson RFS. Indeed, denot-
ing Bn = {bn,1, . . . ,bn,|Bn|} the RFS of the newly born targets, its
density is

f (Bn) = e−λ λ |Bn| fb(bn,1)× . . .× fb(bn,|Bn|) (9)

where λ is the Poisson cardinality parameter, specifying the ex-
pected number of newly born targets, and fb(·) is the distribution
over the surveillance region. A Poisson RFS is completely charac-
terized by the so-called intensity function,

bn(x) � λ fb(x) (10)

which we assume to be a sum-of-Gaussian components (see [6, p.
366])3. As a consequence, if x ∈ Rd , the intensity function of the
RFS Bn is

bn(x) =
Nb

∑
j=1

b jN (x;m j,Σ j) (11)

where Nb is the number of possible sources that can produce a target
at x, (m j,Σ j) are mean and covariance matrix of the target, once
it is produced by the jth source (in aircraft applications they are pa-
rameters tied to the structure of the airports where targets are most
likely to appear) and b j is a weight tied to the average number of
births from the jth source. Clearly, λ = ∑

j
b j is the average number

of spontaneous births in the whole space under surveillance.
Finally, it is assumed that target persistence follows a binomial rule,
with pS being the probability that a target in the scene at time tn−1
survives into time tn.
Assume Xn−1 = {xn−1,1, . . . ,xn−1,N(n−1)} with N(n − 1) =
|Xn−1|. The multi-target RFS Xn can be modeled as

Xn =
[ |Xn−1|⋃

k=1

Sn|n−1(xn−1,k)
]
∪Bn (12)

where Sn|n−1(xn−1,k) is a singleton-or-empty RFS, defined
as Sn|n−1(xn−1,k) = { /0} if kth target dies at time tn or
Sn|n−1(xn−1,k) = {xn,k} if the target persists. With the use of argu-
ments of Section 2.1, the state transition density f (Xn|Xn−1) (see
[6, p. 472]) can be determined.

3. RECURSIVE FILTERING

The basic step required for a causal estimation of the RFS Xn is the
evaluation of Bayes recursions, i.e.

f (Xn|Y1:n−1) =
∫

f (Xn|Xn−1) f (Xn−1|Y1:n−1)δXn−1 (13)

f (Xn|Y1:n) ∝ f (Yn|Xn) f (Xn|Y1:n−1) (14)

where the notation δXn−1 emphasizes the set integral operation
involved by (13) [2, p. 141]. The filtering distribution, f (Xn|Y1:n)
is the best causal description of the evolution with time of the RFS

3In [1] a Gaussian intensity function has been considered. The general-
ization to sum-of-Gaussian intensity birth is straightforward. As in [1], we
did not consider the effect of the spawning, which can be treated like births.
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Xn and would in principle allow implementation of either one of the
two Bayes estimators, known as GMAP-I and GMAP-II, defined as
[6]

GMAP-I :

⎧⎨⎩
̂|Xn| = argmax f (|Xn|

∣∣Y1:n)
X̂n = arg max

Xn:|Xn|= ̂|Xn|
f (Xn|Y1:n) (15)

and

GMAP-II : X̂n = argmax f (Xn|Y1:n)
c|Xn|

|Xn|! (16)

where c is a ”small” constant. Unfortunately, neither GMAP-I nor
GMAP-II can be obtained in closed form in the situation considered
here, whereby alternative filtering techniques should be envisaged.
The key idea underlying Rao-Blackwellization is to introduce some
auxiliary variables, to be sampled by an SMC algorithm, and to treat
analytically the other variables. To be clearer, keeping in mind the
model described in Sections (2.1)-(2.2), it is easily seen that, given
• the vector bn whose ith entry represents the source index of the

ith newly born target in the interval (tn−1; tn] (we remind here
that, in [1], the only information about the newly born target
number is needed since a Gaussian intensity function is consid-
ered).

• the indicator (vector) variable dn whose ith entry indicates
whether the ith target disappears or survives in the interval
(tn−1; tn].

• the association variable, cn, determining from which target (if
any), the observation Yn has been produced.

the model reduces to a linear-Gaussian one, in which filtering can
be performed through Kalman filter. Thus it is convenient to trans-
form the original estimation problem into the problem of estimating
the RFS Zn = Xn ∪Rn, where Rn = [bn,dn,cn], based upon the
observation Y1:n: it is interesting to notice that all of the needed in-
formation regarding the target number is contained in the sequence
R0:n of the realizations of the RFS Rn up to time n.

3.1 Rao-Blackwellized Particle Filter

Consider the modified state process {Zn}∞
n=0 defined above. Its

posterior density can be obviously expressed in the form:

f (Z0:n|Y1:n) = f (R0:n|Y1:n) f (X0:n|Y1:n,R0:n) (17)

where, as anticipated, the term f (X0:n|Y1:n,R0:n) can be derived
analytically since it is simply the posterior of a conventional lin-
ear Gaussian problem. To compute the contribution of the term
f (R0:n|Y1:n) in (17) a particles approximation is instead sought for,
i.e.:

f (R0:n|Y1:n) ≈
N

∑
i=1

w(i)
n m

R
(i)
0:n

(R0:n) (18)

where mY (X ) is the ”0-1” measure4, while R
(i)
0:n is the ith particle

and w(i)
n the corresponding weight. In general, if R

(i)
0:n are sampled

from an importance distribution Q(R0:n|Y1:n), then the weights are

w(i)
n =

w̃(i)
n

∑N
j=1 w̃( j)

n

with w̃(i)
n =

f (R0:n|Y1:n)
Q(R0:n|Y1:n)

(19)

Moreover, if the importance function admits the factorization
Q(R0:n|Y1:n) = q(R0)∏n

τ=1 q(Rτ |R0:τ−1,Y1:τ ), then the particles
can be sampled recursively as

R
(i)
0 ∼ q(R0) and R

(i)
n ∼ q(Rn|R(i)

0:n−1,Y1:n)

4This is defined as
∫
C mY (X )δX = 1 if Y ⊆ C or

∫
C mY (X )δX =

0 otherwise

Similarly, the weights obey the recursion

w̃(i)
n = w(i)

n−1

f (Yn|R(i)
0:n,Y1:n−1) f (R(i)

n |R(i)
0:n−1,Y1:n−1)

q(R(i)
n |R(i)

0:n−1,Y1:n)
(20)

The choice of the importance density is a crucial point in the design
of a SMC algorithm. Next section addresses this issue.

3.2 Importance density design

In the RBPF implementation considered in this paper the birth and
death variables are sampled from the corresponding prior distrib-
utions, while the association variable is sampled from the optimal
importance distribution, i.e.

q(Rn|R(i)
0:n−1,Y1:n)� f (bn) f (dn|R(i)

0:n−1) f (cn|bn,dn,R
(i)
0:n−1,Y1:n)

(21)
The posterior distribution of the data association variables can be
computed as

f (cn|bn,dn,R
(i)
0:n−1,Y1:n)=

f (cn|bn,dn,R
(i)
0:n−1) f (Yn|R(i)

0:n,Y1:n−1)

f (Yn|bn,dn,R
(i)
0:n−1,Y1:n−1)

(22)
The weights update reads

w̃(i)
n = w(i)

n−1 f (Yn|b(i)
n ,d

(i)
n ,R

(i)
0:n−1,Y1:n−1) (23)

Notice that the term f (Yn|R(i)
0:n,Y1:n−1) can be evaluated through

Kalman Filtering [1]. Next, we address the problem of RFS estima-
tion given (18).

3.3 Defining approximated estimators

The first estimator that we propose, referred to as RBPF-I in the se-
quel, can be regarded as an approximate implementation of GMAP-
1, wherein the cardinality of the set Xn is estimated first. As antic-
ipated, the sequence R0:n allows determining |Xn|, which can thus
be estimated by maximizing f (R0:n|Y1:n). Notice first that, given

the particle R
(i)
0:n, the particles X

(i)
n = {x(i)

n,1, . . . ,x
(i)
n,N(i)(n)}, where

x
(i)
n,k = E[xn,k|R(i)

0:n,Y1:n]5 and N(i)(n) = |X (i)
n |, are automatically

defined. Straightforward, albeit non-trivial, derivations allow thus
defining the following cardinality estimator:

̂|Xn| = argmax
k

Pr{|Xn| = k
∣∣Y1:n} = argmax

k
∑

i:|X (i)
n |=k

w(i)
n (24)

where w(i)
n are the weights in (18).

The multi-target state tracker can be at this point implemented
like the Multiple hypothesis tracking (MHT) algorithm (see [9]),

since the discrete variables R
(i)
0:n form a hypothesis of association,

birth, and death of the targets. Therefore, one could declare a win-
ner particle, corresponding to a winner hypothesis in the MHT con-
text, at each time interval. This can be accomplished by taking the
particles with highest weight where duplicate particles are taken
into account. Thus, assuming that there are N′ ≤ N distinct par-
ticles, the recipe of RBPF-I reads:

RBPF-I :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
̂|Xn| = argmaxk ∑i:|X (i)

n |=k
w(i)

n

î = arg max
1≤i≤N ′:|X (i)

n |= ̂|Xn|
w(i)

n

X̂n = X
(̂i)

n

(25)

5This can be obviously evaluated through conventional Kalman filtering.
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Notice that a set of covariance matrices representing the er-
ror in the estimation of the target state can be also defined as

C
(i)
n,k = E[(xn,k −x

(i)
n,k)(xn,k −x

(i)
n,k)

T |R(i)
0:n,Y1:n].

A second estimator, referred to as RBPF-II in what follows, can be
defined similarly by simply dropping the cardinality estimator from
RBPF-I, i.e.:

RBPF-II :

⎧⎨⎩ î = arg max
1≤i≤N ′ w

(i)
n

X̂n = X
(̂i)

n

(26)

On a slightly different strategy, and in particular of mixing the
concepts of PHD and Rao-Blackwellization, relies the third estima-
tor that we propose in this paper. The PHD of the RFS Xn can be
indeed defined as the nonnegative function DXn

(·) taking on values
in X0 such that 6

E[|S∩Xn|] =
∫

S
DXn

(x)dx (27)

for any measurable set S ⊆X0. Clearly, the above integral gives the
expected number of elements of Xn that are in S. Consequently, the
peaks of DXn

(x) are points in X0 with the highest local concentra-
tion of expected number of elements, and can be used to produce
estimates of Xn. From the RBPF output it is straightforward to
obtain an approximation of the PHD as

DXn
(x) =

N

∑
i=1

w(i)
n

N(i)(n)

∑
k=1

N (x;x(i)
n,k,C

(i)
n,k) (28)

Typically, evaluation of the summation in (28) may take advantage
of merging/pruning algorithms to deal with nearly equivalent or
practically irrelevant contributions, respectively: in this paper, we
have adopted a merging algorithm similar to the one in [5] which is
described in Algorithm 1.

Algorithm 1 PHD merging/pruning algorithm

1: Given {w(i)
n ,{x(i)

n,k,C
(i)
n,k}

|X (i)
n |

k=1 }N
i=1

and a merging threshold U , a truncation threshold T .

2: Set � = 0 and I = {(i,k) : i = 1, . . . ,N and k = 1, . . . , |X (i)
n | :

w(i)
n > T}

3: Repeat
j = argmaxi w(i)

n

4: for h = 1, . . . , |X ( j)
n |

� = �+1
L � {(i,k) : (x(i)

n,k −x
( j)
n,h)

T (C(i)
n,k)

(−1)(x(i)
n,k −x

( j)
n,h) ≤U}

w̃(�)
n = ∑(i,k)∈L w(i)

n

x̃
(�)
n = 1

w̃(�)
n

∑(i,k)∈L w(i)
n x

(i)
n,k

C̃
(�)
n = 1

w̃(�)
n

∑(i,k)∈L w(i)
n (C(i)

n,k +(x̃(�)
n −x

(i)
n,k)(x̃

(�)
n −x

(i)
n,k)

T )

I = I \L
5: end
6: Until I = /0
7: Output {w̃(i)

n , x̃
(i)
n ,C̃

(i)
n }�

i=1

After the merging/pruning algorithm the PHD will be

DXn
(x) =

�

∑
i=1

w̃(i)
n N (x; x̃(i)

n ,C̃
(i)
n ) (29)

The estimation can be performed by selecting the Gaussian com-

ponents with weight w̃(i)
n larger than a certain estimation threshold

η .

6The intersection has to be considered in the hit-or-miss topology [6, p.
711]-[8].

4. PERFORMANCE ASSESSMENT

We consider a standard multiple tracking problem. The single tar-
get state is xn = [px,n, py,n, ṗx,n, ṗy,n]T where [px,n, py,n] is the po-
sition in the (x,y) coordinates and [ ṗx,n, ṗy,n] is the velocity in
the (x,y) coordinates, while the observation is a noisy version of
the position only. The surveillance region is [−1000m,1000m]×
[−1000m,1000m]. A linear Gaussian single target motion model is
assumed with almost constant velocity whereby (see eq. (8)):

An =
[

I2 ΔnI2
02 I2

]
and Qn = σ2

v

[
Δ4

n
4 I2

Δ3
n

2 I2
Δ3

n
2 I2 Δ2

nI2

]
(30)

In the previous equation Δn = tn − tn−1, while σv = 5m/s2 is the
standard deviation of the process noise. We assume that observa-
tions arrive every second, so that Δn = 1s. Each target is detected
with probability pD, and the measurement follows the observation
model in eq. (1) with Hn = [I2 02] and Rn = σ2

e I2 where
σe = 10m is the standard deviation of the measurement noise. The
birth process is a RFS Poisson process with intensity function

bn(x) = b1N (x;m1,Σ1)+b2N (x;m2,Σ2) (31)

with b1 = b2 = 0.01, m1 = [−800,700,0,0]T , m2 =
[−250,−150,0,0]T , Σ1 = Σ2 = diag([100,100,25,25]). The
false alarm rate (FAR) is assumed to be pF and the false alarm
distribution is assumed to be uniform over the region of interest.
It is assumed that the initial distribution of the multiple target
RFS is f (X0) = mX0

( /0), i.e. at the beginning of the scene there
are no targets. The probability of persistence is pS = 0.985. As
to the RBPF, N = 2000 particles have been considered. For the
PHD based estimator we considered a merging threshold U = 4, a
truncation threshold T = 10−5 and an estimation threshold η = 0.5
(these values have been selected heuristically).
The simulated scenario is represented in fig. 1, where three targets
are considered: the first target lasts from n = 11s to n = 100s,
the second lasts from n = 16s to n = 55s and the third lasts from
n = 81s to n = 120s.
We measure the track loss performance by using the circular
position error probability (CPEP) [5] defined as

CPEPn(r) =
1

|Xn| ∑
x∈Xn

ρn(x,r) (32)

where, ρn(x,r) = Pr{min
x̂∈X̂n

‖Hx̂−Hx‖2 > r} for some po-
sition error radius r. In the performance assessment we consider
r = 20m. In addition, we measure the error on the estimation of the
number of targets by the cardinality error ratio (CER), i.e.

CERn = Pr{|Xn| �= |X̂n|} (33)

Notice that standard performance measures - such as the mean
square distance error - are not applicable to multiple-target estima-
tors that jointly estimate the number of targets and their states. Tar-
get trajectories are fixed for all simulation trials, while observation
noise and false alarms are independently generated at each trial.
Many parameters can be tested and varied in a multiple target sce-
nario. In this performance assessment we consider the impact of pD
and pF on the tracking accuracy. Fig. 2 shows a snapshot of the RFS
estimates of the RBPF-I algorithm. The true tracks are represented
through continuous line while the RBPF-I estimates are represented
through crosses (×). The simulation parameters are pD = 0.99 and
pF = 0.2. This figure shows that RBPF-I can efficiently track mul-
tiple targets.
Fig. 3 shows the time-averaged CER and CPEP versus pF for pD =
0.99. Clearly, the performance impairs for larger FAR. Among the
three estimation strategies, the RBPF-I is the one that achieves the
best performance in terms of CER. As far as CPEP is concerned,
instead, the three algorithms are practically equivalent, with a small
advantage for the RBPF-I. Similar comments apply to fig. 4, where
CER and CPEP are shown versus pD for pF = 0.2.
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Figure 1: True target positions.
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Figure 3: CER and CPEP vs pF .

5. CONCLUSION

This paper addresses the problem of estimating the time-varying
number of targets and their state through a Rao-Blackwellized Par-
ticle Filter. Assuming a conditionally linear-Gaussian model, we
have introduced and compared three estimation rules. Among the
proposed algorithms, the RBPF-I, which first estimates the target
number and then estimates the full multi-target set, achieves the
best performance. Further researches on this topic, which are being
currently undertaken, concern the extension of the proposed algo-
rithms to non-linear models and to more realistic observation mod-
els through Extended Kalman Filter (EKF) and Unscented Kalman
Filter (UKF). Along a parallel track, new Bayes estimators could be
defined so as to minimize ad-hoc ”well-behaved” cost functions.
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