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ABSTRACT
An empirical formulation that relates the filter length, the transi-
tion bandwidth, the cutoff frequency, the maximum passband ripple
magnitude, the maximum stopband ripple magnitude and the total
ripple energy of symmetric/anti-symmetric finite impulse response
(FIR) single band peak constrained least squares (PCLS) filters is
presented. Design examples are presented to demonstrate the appli-
cation and accuracy of the presented formula.

1. INTRODUCTION

The peak constrained least squares (PCLS) filters [1-2] have been
shown to be able to achieve high design flexibility that allows the
tradeoff between the total ripple energy, the maximum passband rip-
ple magnitude and the maximum stopband ripple magnitude. How-
ever, the filter length, the transition bandwidth, the cutoff frequency,
the maximum passband ripple magnitude and the maximum stop-
band ripple magnitude are usually required to be specified for the
filter design problem. An empirical formula that relates the above
design parameters is useful for determining the design specification
to meet a certain application. Similar problems for symmetric/anti-
symmetric FIR single band minimax filters have been considered
in [3-4]. Even though the minimax filter is a degenerated PCLS fil-
ter with the maximum passband ripple magnitude and the maximum
stopband ripple magnitude constrained to be the smallest achievable
values for the given filter specification, the empirical formulas pre-
sented in [3-4] cannot be applied to the design of PCLS filter. This
is because the total ripple energy of the filter filter is not considered.
In this paper, an empirical formula that relates all the necessary de-
sign parameters of a PCLS filter is presented.

2. PCLS FILTER DESIGN FORMULATION

Let H0(ω) and D(ω) denote the magnitude response of a length N
symmetric/anti-symmetric FIR single band PCLS filter, and the de-
sired magnitude response, respectively. Let the length N vector x be
the filter coefficient vector of H0(z), such that H0(ω) = (η(ω))Tx
with an appropriate sine or cosine vector η(ω), and the superscript
T denotes the transposition operator. Denote fc, ΔB, Bp, Bs, δp, δs
and J(δp,δs, fc,ΔB,N) as the center frequency, the transition band-
width, the passband, the stopband, the maximum passband ripple
magnitude, the maximum stopband ripple magnitude, and the total
ripple energy of the filter respectively. As a result,

J(δp,δs,ΔB,N) =
∫
Bp∪Bs

W (ω)|H0(ω)−D(ω)|2dω, (1)

where W (ω) is the weighting function in which W (ω) > 0 ∀ω ∈
Bp∪Bs. Denote

Q( fc,ΔB,N) ≡ 2
∫

Bp∪Bs

W (ω)η(ω)(η(ω))Tdω, (2)

b( fc,ΔB,N) ≡ −2
∫

Bp∪Bs

W (ω)D(ω)η(ω)dω, (3)

p( fc,Δ) ≡
∫

Bp∪Bs

W (ω)(D(ω))2dω. (4)

Then

J(δp,δs, fc,ΔB,N) =
1
2
xTQ( fc,ΔB,N)x

+(b( fc,ΔB,N))Tx+ p( fc,ΔB).(5)

Given a set of design specifications fc, ΔB, N, D(ω) and W (ω)
for H0(z), the cost functions Q(fc,ΔB,N), b(fc,ΔB,N) and
p( fc,ΔB) can be evaluated analytically. Consequently, the PCLS
filter design problem can be formulated as the following optimiza-
tion problem.

min
x

J(δp,δs, fc,ΔB,N) =
1
2
xTQ( fc,ΔB,N)x

+(b( fc,ΔB,N))Tx+ p( fc,ΔB). (6)

subject to|(η(ω))Tx−D(ω)| ≤ δp, ∀ω ∈ Bp,

and|(η(ω))Tη−D(ω)| ≤ δs, ∀ω ∈ Bs.

3. EMPIRICAL FORMULA

In order to determine an empirical formula for symmet-
ric/antisymmetric FIR single band PCLS filter, a large amount of
PCLS designs are considered for the following five sets of design
specifications presented in subsequent sections. All the filters are
designed withW (ω) = 1 ∀ω ∈ Bp∪Bs and a brickwall desired filter

D(ω), such that D(ω) =
{

1 ∀ω ∈ Bp
0 ∀ω ∈ Bs

. The filter specification

parameters extracted from the obtained filters will then be used to
formulate the empirical formula.

3.1 Filter Length vs Total Ripple Energy

Filters with various filter lengths are designed subject to fixed values
of the maximum passband ripple magnitude, the maximum stop-
band ripple magnitude, the center frequency and the transition band-
width. Other design parameters are δp = δs = 0.002, fc = π

2 , and
ΔB = 0.08π . Fig 1(a) shows a plot of the total ripple energy against
the filter length. It can be seen from Fig 1(a) that there is a lin-
ear relationship between the total ripple energy in dB and the filter
length.

10log10 J(δp,δs, fc,ΔB,N) = a1,1( fc,ΔB,δp,δs)N
+a1,2( fc,ΔB,δp,δs), (7)

where a1,1(· · ·) and a1,2(· · ·) are the corresponding slope and the
intercept of the straight line in Fig 1(a), respectively.

3.2 Transition Bandwidth vs Total Ripple Energy

Filters with various transition bandwidths are designed subject to
fixed values of the maximum passband ripple magnitude, the max-
imum stopband ripple magnitude, the center frequency, the transi-
tion bandwidth and the filter length. Other design parameters are
δp = δs = 0.01, fc = π

2 , and N = 30. Fig 1(b) shows a plot of the
total ripple energy against the transition bandwidth. It can be seen



from Fig 1(b) that there is a linear relationship between the total
ripple energy in dB and the transition bandwidth.

10log10 J(δp,δs, fc,ΔB,N) = a2,1( fc,ΔB,δp,δs)ΔB

+a2,2( fc,ΔB,δp,δs), (8)

where a2,1(· · ·) and a2,2(· · ·) are the corresponding slope and the
intercept of the straight line in Fig 1(b), respectively.

3.3 Maximum Passband Ripple Magnitude vs Total Ripple En-
ergy

Filters with various maximum passband ripple magnitudes are de-
signed subject to fixed values of the maximum stopband ripple mag-
nitude, the center frequency, the transition bandwidth and the filter
length. Other design parameters are δs = 0.01, fc = π

2 , ΔB = 0.08π
and N = 30. Fig. 1(c) shows a plot of the total ripple energy against
the maximum passband ripple magnitude. It can be seen from
Fig. 1(c) that there is a convex downsloping relationship between
the total ripple energy in dB and the maximum passband ripple mag-
nitude in dB. This property of the PCLS filter has been described in
[5]. In order to quantitatively describe the relationship between the
total ripple energy and the maximum passband ripple magnitude, a
polynomial approximation with order Mp is proposed.

10log10 J(δp,δs, fc,ΔB,N) =
Mp

∑
k=0

a3,k( fc,ΔB,N,δs)(20log10 δp)k. (9)

The squares error of the approximation is given by

Ep(δp,Mp) =

(
Mp

∑
k=0

a3,k( fc,ΔB,N,δs)(20log10 δp)k

−10log10 J(δp,δs, fc,ΔB,N)
)2

. (10)

Fig 2(a) plots Ep(δp,Mp) against Mp and δp for the simulation re-
sults in Fig 1(c). It can be seen from Fig 2(a) that the squares error is
smaller than 0.0012 when Mp ≥ 5. Hence, a fifth order polynomial
is good enough for the approximation.

3.4 Maximum Stopband Ripple Magnitude vs Total Ripple
Energy

Filters with various maximum stopband ripple magnitudes are de-
signed subject to fixed values of the maximum passband ripple mag-
nitude, the center frequency, the transition bandwidth and the filter
length. Other design parameters are δp = 0.01, fc = π

2 , ΔB = 0.08π
and N = 30. Fig 2(b) shows a plot of the total ripple energy against
the maximum stopband ripple magnitude. It can be seen from
Fig 2(b) that the total ripple energy in dB and the maximum stop-
band ripple magnitude in dB is also convex downsloping related.
This property is also described in [5]. In order to quantitatively de-
scribe the relationship between the total ripple energy and the maxi-
mum stopband ripple magnitude, a polynomial approximation with
order Ms is proposed.

10log10 J(δp,δs, fc,ΔB,N) =
Mp

∑
k=0

a4,k( fc,ΔB,N,δp)(20log10 δs)k. (11)

The squares error of the approximation is given by

Es(δs,Ms) =

(
Ms

∑
k=0

a4,k( fc,ΔB,N,δp)(20log10 δs)k

−10log10 J(δp,δs, fc,ΔB,N)
)2

. (12)

Fig 2(c) plots Es(δs,Ms) against Ms and δs of the simulation results
in Fig 2(b). It can be seen from Fig 2(c) that the squares error is
smaller than 0.0051 when Ms ≥ 5. Hence, a fifth order polynomial
is good enough for the approximation.

3.5 Center Frequency vs Total Ripple Energy

Filters with various center frequencies are designed subject to fixed
values of the maximum passband ripple magnitude, the maximum
stopband ripple magnitude, the transition bandwidth and the filter
length. Other design parameters are δp = δs = 0.01, ΔB = 0.08π
and N = 30. Fig 3(a) shows a plot of the total ripple energy in dB
against the center frequency. It can be seen from Fig 3(a) that there
is a sinusoidal relationship between the total ripple energy and the
center frequency. In order to quantitatively describe the relation-
ship between the total ripple energy and the center frequency, a
sinusoidal approximation with amplitude A f (ΔB,N,δp,δs), phase
shift φ f (ΔB,N,δp,δs), DC offset c f (ΔB,N,δp,δs) and frequency
ω̂ f (ΔB,N,δp,δs) is employed to model the total ripple energy

10log10 J(δp,δs, fc,ΔB,N) =
A f (ΔB,N,δp,δs)(sin(ω̂ f (ΔB,N,δp,δs) fc

+φ f (ΔB,N,δp,δs)))+c f (ΔB,N,δp,δs). (13)

The squares error of the approximation is given by

E f ( fc) = (A f (ΔB,N,δp,δs)(sin(ω̂ f (ΔB,N,δp,δs) fc

+φ f (ΔB,N,δp,δs)))+c f (ΔB,N,δp,δs)

−10log10 J(δp,δs, fc,ΔB,N))2. (14)

Fig 3(b) plots E f ( fc) against fc for the simulation results in Fig 3(a).
It can be seen from Fig 3(b) that the squares error is smaller than
0.0113, which is good enough for most filter design applications.

An empirical formula relating the filter length, the transition
bandwidth, the cutoff frequency, the maximum passband ripple
magnitude, the maximum stopband ripple magnitude and the to-
tal ripple energy of a symmetric/anti-symmetric FIR single band
PCLS filter can now be formulated by combining the above indi-
vidual models.

10log10 J(δp,δs, fc,ΔB,N) =

(Â f sin(ω̂ f fc +φ f )+1)×
Mp

∑
m=0

Ms

∑
n=0

(a1
m,nNΔB+a2

m,nN +a3
m,nΔB+a4

m,n)×

(20log10 δp)m(20log10 δs)n, (15)

where Â f , ω̂ f , φ f , and ak
m,n for k = 1,2,3,4, ,= 0,1, . . . ,Mp and

n = 0,1, . . . ,Ms are constant parameters independent of N, fc, ΔB,
δp and δs.

3.6 Estimation of Parameters

Note that ω̂ f and φ f can be estimated directly from Fig 3(a). To
estimate other parameters in the proposed model, define

a =
[

a1
0,0 · · · a1

0,Ms
· · · a1

Mp,0
· · · a1

Mp ,Ms
· · ·

· · · a4
0,0 · · · a4

0,Ms
· · · a4

Mp ,0
· · · a4

Mp,Ms

]T



and

M(N,ΔB,δp,δs) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NΔB(20log10 δp)0(20log10 δs)0
...

NΔB(20log10 δp)0(20log10 δs)Ms

...
NΔB(20log10 δp)Mp (20log10 δs)0

...
NΔB(20log10 δp)Mp(20log10 δs)Ms

...
(20log10 δp)0(20log10 δs)0

...
(20log10 δp)0(20log10 δs)Ms

...
(20log10 δp)Mp(20log10 δs)0

...
(20log10 δp)Mp(20log10 δs)Ms

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

By fixing the value of fc, denoted as fc,1, and taking
4(Mp + 1)(Ms + 1) different sets of values of N,ΔB,δp,δs
and J(δp,δs, fc,ΔB,N), denoted as Nk,ΔBk,δp,k,δs,k and
Jk(δp,k,δs,k, fc,1,ΔBk,Nk) for k = 1,2, . . . ,4(Mp + 1)(Ms + 1),
respectively, we have 4(Mp + 1)(Ms + 1) columns of
M(N,ΔB,δp,δs), denoted as Mk(Nk,ΔBk,δ p,k,δs,k). Denote

M̂(N,ΔB,δp,δs) = [M1(N1,ΔB1, ]δp,1,δs,1), · · · ,
· · · ,M4(mp+1)(Ms+1)(N4(Mp+1)(Ms+1),

ΔB4(Mp+1)(Ms+1),δp,4(Mp+1)(Ms+1),

δs,4(Mp+1)(Ms+1))], (17)

J(δp,δs, fc,ΔB,N) = [J(δp,1,δs,1, fc,1,ΔB1,N1) · · ·
J(δp,4(Mp+1)(Ms+1),δs,4(Mp+1)(Ms+1), fc,1,

ΔB4(Mp+1)(Ms+1),N4(Mp+1)(Ms+1))]
T . (18)

Suppose Mk(Nk,ΔBk,δp,k,δs,k) for k = 1,2, · · · ,4(Mp +1)(Ms +1)
are chosen in such a way that they are linearly independent, then
M̂(N,ΔB,δp,δs) is invertible and

(M̂(N,ΔB,δp,δs))−110log10 J(δp,δs, fc,1,ΔB,N)

= Â f sin(ω̂ f fc,1 +φ f )+1)(a). (19)

Similarly, by fixing the value of fc to a different value, denoted as
fc,2, yields

(M̂(N,ΔB,δp,δs))−110log10 J(δp,δs, fc,2,ΔB,N)

= Â f sin(ω̂ f fc,2 +φ f )+1)(a). (20)

Let the i-th element of the vectors a, and
(M̂(N,ΔB,δp,δs))−110log10 J(δp,δs, fc,�,ΔB,N) with � = 1,2 be
ai and vi,� respectively. Then vi,� = (Â f sin(ω̂ f fc,� +φ f )+1)ai for
i = 1,2, · · · ,4(Mp +1)(Ms +1). This implies that

ai =
vi,�

Â f sin(ω̂ f fc,� +φ f )+1
, (21)

and

Â f =
vi,2 −vi,1

vi,1 sin(ω̂ f fc,2 +φ f )−vi,2 sin(ω̂ f fc,1 +φ f )
. (22)

A good estimate of Â f and ai can be obtained by

Ā f =
1

4(Mp +1)(Ms +1)
×

4(Mp+1)(Ms+1)

∑
i=1

vi,2 −vi,1

vi,1 sin(ω̂ f fc,2 +φ f )−vi,2 sin(ω̂ f fc,1 +φ f )
,

āi =
1
2

(
vi,1

Ā f sin(ω̂ f fc,1 +φ f )+1
+

vi,2

Ā f sin(ω̂ f fc,2 +φ f )+1

)
,

for i = 1,2, . . . ,4(Mp +1)(Ms +1).

4. DESIGN EXAMPLES

The application and accuracy of the presented empirical formula is
best demonstrated by design examples, where various filter design
parameters of the actual PCLS filter are compared with that esti-
mated from the presented formula. The following simulations as-
sumeW (ω) = 1 ∀ω ∈Bp∪Bs and a brickwall filter D(ω). First con-
sider the estimation of the required filter length of the PCLS filter
by considering the following design parameter set: δp = δs = 0.01,
fc = π

2 and ΔB = 0.08π . Suppose that the target total ripple energy
of the PCLS filter is −40dB. Using Mp = Ms = 5, the proposed
model requires 144 different sets of values of Nk,ΔBk,δp,k,δs,k
and Jk(δp,k,δs,k, fc,1,ΔBk,Nk) for k = 1,2, . . . ,144, to estimate
the model. These values are obtained by considering ΔBk ∈
{0.075π,0.08π,0.085π}, δp,k ∈ {0.007,0.009,0.0011,0.0013},
δs,k ∈ {0.007,0.009,0.0011,0.0013} and Nk ∈ {28,30,32}. Then
the PCLS filters are designed via solving the corresponding opti-
mization problems defined in eq.(1) and eventually the correspond-
ing values of Jk(δp,k,δs,k, fc,1,ΔBk,Nk) for k = 1,2, . . . ,144 are ob-
tained. As these values are obtained, the parameters of the model
could be estimated by the method discussed in Section 3.6. By
putting these estimated parameters as well as the specification val-
ues into the proposed model, the minimum filter length N required
to meet the above design specification is found to be no less than 28
. To verify the accuracy of the proposed model, PCLS filters with
filter lengths N = 26 and N = 28 are designed subject to the same set
of specifications (δp = δs = 0.01, fc = π

2 and ΔB = 0.08π). Fig 4(a)
(for N = 26) and Fig 4(b) (for N = 28) show the magnitude response
of the designed PCLS filters. It can be seen from Fig 4(a) that the
stopband ripple magnitudes of the designed filter are all equal, so
it is a minimax filter. The maximum passband ripple magnitude is
equal to 0.0102 , the maximum stopband ripple magnitude is equal
to 0.0101 and the total ripple energy is equal to -38.7157dB, which
does not meet the required specification. On the other hand, it can
be seen from Fig. 4(b) that the stopband ripple magnitudes of the
designed filter are not all equal, so it is not a minimax filter. Th
maximum passband ripple magnitude is equal to 0.01 , the max-
imum stopband ripple magnitude is equal to 0.0099 and the total
ripple energy is equal to -44.2808dB. Hence, the required specifica-
tion is satisfied and the target total ripple energy is met. This implies
that the minimum filter length required to meet the specification is
N = 28, which is the same as predicted by the proposed model.

Another example considers the estimation of the transition
bandwidth. The design parameters are given as δp = δs =
0.006, fc = π

2 and N = 32. Suppose that the target total ripple en-
ergy of the PCLS filter is -45dB. Based on the estimated parameters
obtained in the first example, the minimum transition bandwidth
is estimated to be ΔB = 0.08π . PCLS filters with transition band-
widths equal to ΔB = 0.07π, 0.08π are designed subject to the same
set of specifications. The magnitude responses of the design PCLS
filters are shown in Fig 5(a) (for ΔB = 0.07π) and Fig 5(b) (for
ΔB = 0.08π). It can be seen from Fig 5(a) that the maximum pass-
band ripple magnitude is equal to 0.0079, the maximum stopband
ripple magnitude is equal to 0.0075, and the total ripple energy is
equal to -41.3010dB, in which the required specification is not sat-
isfied. On the other hand, it can be observed from Fig 5(b) that the



maximum passband ripple magnitude is equal to 0.006 , the max-
imum stopband ripple magnitude is equal to 0.0059 and the total
ripple energy is equal to -49.4528dB . Hence, the required speci-
fication is satisfied and the target total ripple energy is met. This
implies that the minimum transition bandwidth required to meet the
specification is ΔB = 0.08π , which is the same as that predicted by
the proposed model.

5. CONCLUSIONS

The main contribution of this brief is to propose an empirical for-
mula that relates the filter length, the transition bandwidth, the cut-
off frequency, the maximum passband ripple magnitude, the max-
imum stopband ripple magnitude and the total ripple energy of
symmetric/anti-symmetric FIR single band PCLS filters which is
useful for defining the design specifications for PCLS filter for a
given performance.
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Figure 1: (a) Total ripple energy vs filter length; (b) Total ripple
energy vs transition bandwidth; (c) Total ripple energy vs maximum
passband ripple magnitude of a PCLS filter.



Figure 2: (a) Ep(δp,Mp) vs Mp and δp; Total ripple energy vs maxi-
mum stopband ripple magnitude; Es(δs,Ms) vs Ms and δs of a PCLS
filter.

Figure 3: (a) Total ripple energy vs center frequency; (b) E f ( fc) vs
fc of a PCLS filter.

Figure 4: (a) Magnitude response of PCLS filter with N = 26; (b)
Magnitude response of PCLS filter with N = 28.

Figure 5: (a) Magnitude response of PCLS filter with ΔB = 0.07π;
(b) Magnitude response of PCLS filter with ΔB = 0.08π .


