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ABSTRACT

Towed arrays of hydrophones are commonly used in
marine seismic to infer properties about the sea bot-
tom. Normally, air guns are used as impulsive sources
of pressure waves, and the hydrophone recordings are
employed to estimate three dimensional maps of the ge-
ological layer structure of the subsurface sea bottom.
In this paper, we present a statistical analysis of pure
noise recordings, i.e., passive hydrophone recordings in
the absence of impulsive sources. In particular, we show
that a multitaper power spectral estimate of the noise
processes yields a composite power law spectrum. Fur-
thermore, on the basis of Parzen kernel estimates and
higher-order moment analysis of the noise amplitudes,
we deduce that the noise is slightly platykurtic (sub-
Gaussian) and almost symmetric. These findings will
have consequences for future noise reduction and signal
detection algorithms.

1. INTRODUCTION

The goal of marine seismic exploration is to obtain an
image of the sea bottom. In that purpose, an air gun is
used as an impulsive source to generate pressure waves
that travels down into the subsurface, where it is re-
flected. Some of the reflected energy is recorded by a
long seismic streamer towed behind a vessel, together
with unwanted noise and among others, weather and
flow related noise. More precisely, streamers are sub-
jected to forces from the vessel, from steering birds and
from the motion of the sea. Minimizing the effects of un-
wanted noise is one of the main challenges faced by seis-
mic data processors. Characterization of seismic noise
has been performed in the past, with focus either on low
frequencies or on hydrophone streamer noise [5]. Sta-
tistical properties of ocean noise have been studied as
well, [1] and [4]. More recent marine streamers are now
used in seismic acquisition. It is therefore pertinent to
extend the previous results with noise characterization
completed from modern equipments. Results should be
used for future work on noise reduction.

Data consists in passive hydrophones recordings, i.e.
in the absence of impulsive sources. It has been ac-
quired during a Fugro campaign in the Mediterranean
sea. The vessel’s speed was 5 knots and weather con-
ditions were pretty good with 1 to 1.5 meters waves.
Nominal streamer depth is 8 meters. The noise data set
was obtained using a solid seismic streamer which con-
sists in a large number of hydrophones, grouped in sub-
sections of 12.5 meters long. Within each of 12.5 meters
subsections, inputs from hydrophones are summed and
a trace representing recorded signal is produced and re-

Figure 1: Streamer layout.

ferred to as a channel. As illustrated in Figure 1, the
seismic streamer is divided into 54 so-called active sec-
tions. Each active section is 150 meters long and con-
tains 12 groups of hydrophones, providing 12 channels
with noise records. Altogether, the streamer has 648
channels. There are two possible locations where extra
units with depth keeping and ranging functionalities can
be attached, at ∼ 25 meters from the head and ∼ 25 me-
ter from the tail of each active section. Whether they
cause extra noise, has to be determined.

Noise pressure values are recorded every 2 millisec-
onds and for a duration of 6 seconds, simultaneously
by the 648 channels. They are gathered as one noise
recording. Such a recording process is repeated 10 times
at approximatively 6 seconds interval, so that a total of
10 noise recordings are available for the analysis.

2. MULTITAPER SPECTRAL ANALYSIS

It is well known that the standard periodogram estima-
tor of the power spectral density is statistically inconsis-
tent [3]. The shortcomings of the periodogram may be
mitigated by tapering in time to reduce spectral leak-
age, and by smoothing in frequency or time to reduce
the estimator variance. The state of the art tapering
technique is David J. Thomson’s multitaper estimator.
This estimator reduces spectral leakage subject to cer-
tain optimality criteria, while simultaneously reducing
variance through an averaging procedure over an or-
thonormal set of tapers. A time-frequency resolution
bandwidth parameter must be chosen by the user. In
practice, the analysis of seismic records is not very sensi-



tive to the actual choice of the bandwidth parameter, as
long as an adequate compromise between smoothing and
frequency resolution is identified. We regard the multi-
taper estimator to be the natural choice for our kind of
data, and several examples of multitaper estimates will
be shown in this paper.

2.1 Brief Outline of Multitaper Method

As the multitaper method may not be well known among
seismic data analysts, we will now briefly outline the
estimator before actually applying it to streamer data.

The multitaper (MT) technique proposed by Thom-
son [8], follows ideas from Slepian [7]. This method com-
bines the use of optimal data tapers, with averaging over
a set of power spectral estimates.

2.1.1 Discrete Prolate Spheroidal Sequences

Thomson [8] proposed to apply some stringent optimal-
ity criteria when selecting data tapers. He suggested to
consider tapers that maximizes the “spectral concentra-
tion”, or the energy contained in the mainlobe relative
to the total energy of the taper. One therefore seeks the
taper v[n] with a discrete Fourier transform V (f), that
maximizes the window energy ratio

λ =

fB∫

−fB

|V (f)|2 df

1/2∫

−1/2

|V (f)|2 df

(1)

where fB is the wanted resolution half-bandwidth (a
design parameter) of the taper. An ideal taper would
therefore have λ ≃ 1 and fB as small as possible (but
note that fB > 1/N).

Expressing V (f) by its discrete Fourier transform,

V (f) =
∑N−1

n=0 v[n] exp(−j2πfn) and maximizing the
above functional with respect to v[n], [7] showed that

the optimal taper v = [v[0], v[1], . . . , v[N − 1]]
T

obeys
the eigenvalue equation

Av = λv (2)

where the matrix A has elements [A]nm = sin[2πfB(n−
m)]/[π(n − m)], for n, m = 0, 1, . . . , N − 1. Note that
(2) is an N -dimensional eigenvector/eigenvalue problem,
thus giving N eigenvector/eigenvalue pairs, (vk, λk),
where k = 0, 1, . . . , N − 1. The interpretation is thus
that we obtain a sequence of orthogonal tapers (eigen-
vectors), vk, each with a corresponding spectral con-
centration measure λk. The first taper v0 has a spectral
concentration λ0. Then, v1 maximizes the ratio in (1)
subject to being orthogonal to v0, and with λ1 < λ0.
Continuing, we can thus form up to N orthogonal ta-
pers v0,v1, . . . ,vN−1, with 0 < λN−1 < λN−2 < · · · <
λ0 < 1. Only tapers with λk ≃ 1 can be applied, since
λk ≪ 1 implies a large undesirable leakage.

It is usually safe to apply tapers up to order k =
2NfB − 1 [3].It is customary to standardize the tapers
such that they are orthonormal, vT

k vk′ = δk,k′ , where
δk,k′ is the Kronecker delta. The solutions vk are re-
ferred to as “Discrete Prolate Spheroidal Sequences”

(DPSS) [7]. These optimal tapers are not expressible
in closed form. The eigenvalue equation (2) must there-
fore be regarded as the defining equation for these ta-
pers. Recent versions of the Matlab Signal Processing
Toolbox includes efficient solvers for the DPSS problem.

2.1.2 Basic Multitaper Spectral Estimators

The simplest definition of an MT estimate is simply the
arithmetic average of K tapered “eigenspectra”

ŜMT (f) =
1

K

K−1∑

k=0

Ŝ
(k)
MT (f) (3)

where the “eigenspectrum” of order k is defined by

Ŝ
(k)
MT (f) =

∣∣∣∣∣

N−1∑

n=0

vk[n]x[n] exp(−j2πfn)

∣∣∣∣∣

2

(4)

where vk[n] denotes the elements of DPSS-taper of order
k. Also data adaptive averaging schemes exist, see [8]
and [3]. The adaptive averaging is necessary in several
applications, and will be employed also in this paper.

The averaging of tapered spectral estimates, Eq. (3),
leads to a decrease of the variance relative to any indi-
vidual spectral estimates. Asymptotically,[8]

var{ŜMT (f)} ≃ (1/K)S2(f), (5)

where S(f) is the true power spectrum.
Note that [2] compared the leakage, variance, and

frequency resolution for the DPSS MT method with
that of a standard weighted overlapped segment aver-
aging (WOSA). He found that the MT method always
performed better than the WOSA for each of the mea-
sures, when the other two measures were required to be
equal for both estimation methods.

3. PARZEN AMPLITUDE ESTIMATES

The statistical distribution of the noise amplitude fluc-
tuations i.e. the probability density function (pdf) of
the measured signal amplitudes, is an important tool
for characterization of the data.

The histogram is the simplest and most widely used
estimator of the pdf. Despite its widespread use, the
histogram has several fundamental drawbacks. Basi-
cally, the histogram amounts to counting the number
of amplitude levels that falls within a specified bin
x0 + mh ≤ x < x0 + (m + 1)h, where x0 is a chosen
origin, h is a chosen bin width, and m is an integer.
The histogram estimator is therefore a discontinuous
and quantized piecewise constant function. Moreover,
the histogram is sensitive to the choice of origin. The
histogram estimator is particularly problematic when
analyzing short data segments.

To overcome the many non-desirable properties of
the histogram, we have chosen to estimate the proba-
bility density function by means of the so-called Parzen
kernel estimator. The kernel estimator of density has
good statistical properties, and it is well suited for the
analysis of short data segments. Basically, the kernel



estimator is constructed by placing a smooth and sym-
metric normalized function (a “kernel”) with its origin
at each data point. By summing this collection of nor-
malized functions, we obtain a smooth and statistically
consistent estimate of the probability density.

In general, the kernel estimator of the pdf at ampli-
tude x, given N data samples, x0, x1, . . . , xN−1 can be
written as [6, 9]

p̂(x) =
1

N

N−1∑

n=0

Kh (x − xn) . (6)

Here, Kh(ξ) ≡ (1/h)K(ξ/h), where K(ξ) is the so-called
smoothing kernel, and h is a scaling parameter that con-
trols the degree of smoothing.

For Eq. (6) to be a valid estimator, one must require
that K(ξ) ≥ 0, ∀ξ, and

∫
∞

−∞
K(ξ)dξ = 1. In addition, it

is reasonable to restrict K(ξ) to the class of symmetric
kernels, K(−ξ) = K(ξ). In practice, the resulting esti-
mator is not very sensitive to the detailed shape of the
kernel K(ξ). The estimate however depends strongly on
the value of the parameter h.

A good standard choice of the smoothing kernel is
the Gaussian K(ξ) = (1/

√
2π) exp(−ξ2/2). The choice

of the smoothing parameter h is non-trivial, and several
techniques exist for estimating a value of h that obeys
some optimality criterion.

It is straightforward to show that the expected value
of the basic kernel estimator in Eq. (6) can be written
as [6, 9]

E {p̂(x)} = Kh(x) ∗ p(x), (7)

where ∗ denotes the convolution operator, and p(x) is
the true amplitude probability density function (pdf).
Thus, we may interpret the pdf estimator in Eq. (6) as a
smoothed version of the true (but unknown) underlying
pdf. As a consequence, the kernel estimate of the pdf
does not exhibit the unphysical discontinuities present
in the naive histogram based pdf estimator.

The bias of the estimator can readily be approxi-
mated by

b {p̂(x)} ≡ E {p̂(x)} − p(x) ≈ σ2
K

2
h2p′′(x), (8)

where σ2
K ≡

∫
∞

−∞
ξ2K(ξ)dξ. Assuming that the data are

statistically independent, a useful approximation for the
estimator variance is given by [6],

var {p̂(x)} ≈ EK

Nh
p(x), (9)

where EK ≡
∫
∞

−∞
K2(ξ)dξ is the energy of the kernel.

3.1 Moments of the Amplitude Probability

Since the full pdf contains statistical information at a
detailed level, it is often convenient to consider higher
order moments of the data. The coefficient of skewness
(or simply the skewness) is the dimensionless third order

central moment defined by γ3 = µ3/µ
3/2
2 . The kurtosis

(or coefficient of excess) is the dimensionless fourth or-
der central moment defined by γ4 = µ4/µ2

2 − 3. Here,
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Figure 2: Envelope of the 648 power spectrum estimates.
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Figure 3: Averaged power spectrum estimate with linear
fit of the (0, 12] and [50, 150] Hz intervals (red lines).

the central moment of order ν for a stochastic variable
X is defined by µν = E {[X − E {X}]ν}. Symmetric
densities have γ3 = 0, while densities skew to the right
(left) have γ3 > 0 (γ3 < 0). The kurtosis is a flatness
measure relative to the Gaussian. If γ4 < 0, the density
is termed platykurtic, and the density is flatter than the
Gaussian close to the maximum.

4. ANALYSIS OF SEISMIC NOISE

4.1 Spectral Analysis

The multitaper estimator is used to produce the spec-
trum estimate of a 6 seconds signal recorded simultane-
ously by 648 channels. Parameters for computation of
the estimator are chosen to be: fast Fourier transform
of length N = 1024 samples, time-bandwidth product
Nf0 = 4 and Thomson adaptive weighting as averaging
scheme (sampling frequency Fs is 500 Hz). The power
spectrum is estimated for each channel, which means
that a total of 648 spectrum estimates are produced. For
practical reasons, Figure 2 shows the envelope of the 648
estimated power spectra plotted on the [0, Fs/2] inter-
val. It appears that the difference in noise level is signif-
icant and can reach 50 dB re(W/Hz) at 1m. However,
all power spectrum curves have the same basic shape.
In order to obtain a better overview of the particular



shape of this curve, the averaged estimate is computed
and shown in Figure 3. We are now able to identify 3
distinct regions in the averaged noise spectrum:

- Low frequency region: [0, 12) Hz, with a magnitude
attenuation of 125 dB, which contains most of the
noise.

- Intermediate frequency region: [12, 190) Hz, which
is pretty flat and has a magnitude attenuation of 49
dB.

- High frequency region: [190, 250] Hz, where we can
observe the effects of the a hardware lowpass filter,
with cut-off frequency at 200 Hz and attenuation of
370 dB/oct.

Where [a, b) = {x ∈ R|a ≤ x < b}.
Because seismic data of interest are normally within

the [0, 150] Hz interval, we choose to determine power-
laws on the (0, 12] Hz and the [50, 150] Hz intervals.
Power-laws are of the type P (f) ∼ fp. Generalizing
slightly, we aim to perform a piecewise fit of our spec-
trum to the spectral shape P (f) = 10p2fp1 , which is
equivalent to

log10(P (f)) = p1 log10(f) + p2

where p1 and p2 are coefficients to be determined. Here,
p1 is the spectral decay coefficient of interest, while p2

is a scaling parameter of little interest in the present pa-
per. The parameter p1 can be estimated by plotting the
region of interest on log-log scale, and using basic linear
fitting tools to measure the slope. With such a proce-
dure, we get the following estimates, drawn in Figure 3
by the red curves:

- For the first region, (0, 12] Hz:

p1 = −4.15 (10)

- For the second region, restricted to [50, 150] Hz:

p1 = −3.24 (11)

Such spectral analysis have been repeated with other
noise recordings, from the same seismic campaign and
from other seismic campaigns. Similar characterization
of the seismic noise has been repeatedly observed.

4.2 Amplitude Probability Density Estimates

4.2.1 Focus on a single data record

It is important to have an overview of the way the noise
behaves. For convenience, we only plot a few time series
from channels located far apart along the cable, see Fig-
ure 4. We choose to display channels number 1, 10, 100,
200, 300, 400, 500, 600 and 640, which spans over 8.1
kilometers. The x-axis represents the time in seconds,
while the y-axis represents the noise pressure in mil-
libars. One can observe that the very first ones (channels
1 and 10) and the last one (channel 640) are corrupted
with low amplitude noise. However, all the time series
present the same slow up and down fluctuations, whose
amplitude can reach significant values.

To go further into the characterization of the noise
amplitude, we use the Parzen kernel estimator to esti-
mate its statistical distribution. The smoothing ker-
nel is chosen to be the Gaussian function K(ξ) =
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Figure 4: A few noise records with respect to time.
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Figure 5: Envelope of the 3000 pdf estimates.

(1/
√

2π) exp(−ξ2/2) and the smoothing parameter is
chosen as h = 0.102, as described in Section 3.

We can now estimate the distribution of the noise
with respect to time. Since noise measurements are
available for 3000 time samples, then 3000 probability
density functions are estimated based on data recorded
by 648 channels. The envelope of the 3000 probability
density estimates is shown in Figure 5. If we look at dis-
tribution estimates one after the other, we observe that
they change very progressively over time. So, even if
differences among noise distributions are not negligible,
they remain reasonable, and considering the averaged
probability density function in order to characterize seis-
mic noise distribution is acceptable. Figure 6 shows the
averaged probability density function together with fit-
ted Gaussian and t-distributions. The averaged pdf is
slightly skewed to the right and none of the two standard
distributions can fit with this skewness.

4.2.2 Extension to 10 data records

Estimation of the noise amplitude distribution is re-
peated with data recorded under the same conditions
few seconds or minutes later. The smoothing parame-
ters remain unchanged. Averaged pdfs resulting from
estimations for each data record are plotted in Figure 7.
All pdf curves have a similar shape, but they differ in
the maximum amplitude and in their flatness.
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Figure 6: Averaged pdf estimate (solid thick) shown
together with Gaussian fit (solid, red) and t-distribution
fit (dashed line).
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Figure 7: Overlay plot of the mean pdf of 10 noise
recordings.

Skewness and kurtosis coefficients, third and fourth
order central moments respectively, describe the distor-
tion of pdfs relatively to the normal distribution. They
are calculated as described in Section 3.1 for each noise
record and the results are shown in Table 1. Distribution
resulting from the 1st record presents the biggest right-
skewed value, as observed in Figure 6. Distributions
resulting from the 2nd, 5th and 10th records present neg-
ative kurtosis numbers whereas the ones resulting from
the 6th and 8th records present small, positive kurtosis
numbers. In Figure 7, they are respectively the flat-
test and more peaked curves of the graph. All skewness
numbers fall into the [−0.05, 0.14] interval, which indi-
cates that distributions are almost symmetric. Kurtosis
numbers fall into the [−0.44, 0.15] interval, which means
that some distributions are slightly flatter than the nor-
mal distribution. The coefficient values confirm the im-
pression given by the figures, and therefore, they allow
us to conclude that distributions of these seismic noise
records are almost symmetric and slightly platykurtic.

5. CONCLUSIONS

Some pure noise recordings using solid streamers have
been analyzed. The multitaper power spectral estimate
of the noise processes yields a composite power law spec-

X Rec 1 Rec 2 Rec 3 Rec 4 Rec 5
γ3 0.14 -0.04 0.13 -0.05 0.11
γ4 -0.02 -0.12 -0.03 0.03 -0.20

X Rec 6 Rec 7 Rec 8 Rec 9 Rec 10
γ3 -0.05 0.00 -0.02 0.08 0.11
γ4 0.11 -0.01 0.15 -0.10 -0.44

Table 1: Estimated skewness and kurtosis coefficients
for 10 noise records.

trum. In addition, Parzen kernel estimation and higher-
order moment analysis of the noise amplitudes, shows
that the noise is slightly platykurtic and almost sym-
metric. Such a characterization of seismic noise can be
used in the future for implementation of signal detection
and noise reduction algorithms.

6. ACKNOWLEDGMENTS

The authors thank the Research Council of Nor-
way for support under the PETROMAKS project no.
175921/S30. We thank Peder Berentzen and Thomas
Elboth for their help, and Fugro Multi Client Ser-
vices for the permission to use and publish the pre-
sented datasets. A. Hanssen thanks the Research Coun-
cil of Norway for support under the YFF project no.
162831/V30.

REFERENCES

[1] P.L. Brockett, M. Hinich, and G.R. Wilson, “Nonlin-
ear and non-Gaussian ocean noise,” J. Acoust. Soc.
Am., vol. 82, pp. 1386–1394, Oct. 1987.

[2] T.P Bronez, ”On the performance advantage of mul-
titaper spectral analysis,” IEEE Trans. Signal Proc.,
Vol. 40, pp. 2941–482, 1992.

[3] D.B. Percival and A. T. Walden, Spectral Analy-
sis for Physical Applications: Multivariate and Con-
ventional Univariate Techniques, Cambridge: Cam-
bridge Univ. Press, 1993.

[4] L.A. Pflug, P. Jackson, G.E. Ioup, and J.W. Ioup,
“Variability in Higher Order Statistics of Measured
Shallow-Water Shipping Noise,” in IEEE signal pro-
cessing workshop on Higher-Order Statistics 1997,
1997, pp. 0400.

[5] M. Schoenberger and J.F. Mifsud, “Hydrophone
streamer noise,”Geophysics, vol. 39, pp. 781–793,
Dec. 1974.

[6] B.W. Silverman, Density Estimation for Statistics
and Data Analysis, Chapman & Hall, 1986.

[7] D. Slepian, ”Prolate spheroidal wave functions,
Fourier analysis and uncertainty; V: The discrete
case,” Bell Syst. Tech. J., Vol. 5, pp. 1371–1429,
1978.

[8] D.J. Thomson, ”Spectrum estimation and harmonic
analysis,” Proc. IEEE, Vol. 70, pp. 1055–1096, 1982.

[9] M.P. Wand and M.C: Jones, Kernel Smoothing,
Chapman & Hall, 1995.


