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ABSTRACT

In this paper, a fully non-supervised extension of a recent
reconstruction method is proposed. Previous contributions
to Bayesian estimation of Gibbs hyperparameters are mostly
based on the tabulation of the partition function. However,
such a usual approach becomes impracticable when the di-
mensions of the object are large and variable across recon-
structions. Our solution is to extrapolate the previously tab-
ulated partition function to the specific dimensions of the re-
gion of interest. Validation tests show that this idea reveals
efficient and realistic.

1. INTRODUCTION

Non-destructive evaluation (NDE) is used for the in-service
inspection of metal structures [1, 2]. In the context of nu-
clear power station steel pipe inspection, the use of narrow-
beam gamma-rays is described in [2]. Due to operational
constraints, the inspection is performed with a total angular
excursion of 30◦.

With a view to a quantitative characterization of
the potential defects, digitized tomography of the three-
dimensional (3D) region of interest (ROI) is preferable to the
simple interpretation of the radiographs. However, such a to-
mographic reconstruction problem is challenging since only
limited-angle projections are available. Faithful reconstruc-
tions of the 3D attenuation map cannot be expected without
adequate prior constraints on the solution [3, 4]. More specif-
ically, recent contributions rely on

• the binary character of the attenuation map [5];

• the positivity of the attenuation map and on the sparsity
of the defects, jointly with an edge-preserving Markov
random field (MRF) prior model [6];

• an underlying 3D Markov-Potts prior model for region
labels [7].

In the latter contribution, Mohammad-Djafari and Robillard
propose an interesting reconstruction method that is nearly
unsupervised, i.e., all statistical hyperparameters but one are
estimated rather than empirically adjusted. The remaining
parameter is the strength of interactions in the Ising model.
Unfortunately, this parameter plays a paramount role in the
quality of reconstruction, so there is much at stake in a fully
unsupervised extension of Mohammad-Djafari and Robil-
lard’s method (hereafter called “MDR method”). This is the
motivation of the present work, special attention being paid
to the practicability in the NDE context.

2. PROBLEM STATEMENT

In order to process the radiograms numerically, the films are
usually digitized, and the inspected object is assumed to be
decomposable into voxels. Up to pre-processing steps for
calibration, Compton diffusion correction and compensation
of misalignments between films, the observation equation
reads g = Hf + ε , where g ∈ RM

+ is the data vector gath-

ering all projections, f = { f (r),r ∈ R} ∈ RN
+ contains the

attenuation values corresponding to the N voxels of the ROI
R scanned in an arbitrary order, and H is a projection matrix
whose structure is characteristic of tomography problems. ε
is a vector of noise, standing for all kinds of errors. Follow-
ing [7], it will be assumed centered, white and Gaussian with
a variance σ2

ε :

p(g |f ,σε ) = (2πσ2
ε )

−M/2 exp
(
−

1

2σ2
ε

‖g−Hf‖2
)
. (1)

As a prior model, [7] makes use of a Gaussian mixture
model, defined as a doubly Markov field:

H1) a spatial field of labels z is introduced to describe an
object composed of K distinct materials, and z is assumed
distributed according to a Potts model. Here, K = 2, so the
latter identifies with an Ising model:

p(z |α) = pα(z) = exp(−αJ(z))/k(α) (2)

where z = {z(r),r ∈ R} ∈ {0,1}N
,

J(z) = ∑
(r,s)∈C

δ (z(r)− z(s)),

k(α) =∑
z

exp(−αJ(z)) (3)

is the partition function (i.e., the normalization constant), and
C (r) is the set of cliques, i.e., of neighbor pairs.

H2) the distribution of f conditional on z is defined as a
first-order Gaussian random field. A decorrelation assump-
tion is made for voxels belonging to distinct materials (i.e.,
z(r) 6= z(r′)), and the field is finally described by 2K + 1 pa-
rameters: the mean and variance parameters (mk,νk) of each
material, and a correlation parameter β .

One of the interesting features of the resulting MDR
method is to provide Bayesian estimates of f and z that
do not depend on hyperparameters θ = (σε ,(mk,νk)1,...,K),
the latter being either estimated in a joint maximum a pos-
teriori (JMAP) approach, or marginalized in a Markov chain
Monte Carlo (MCMC) version. However, the proposed so-
lutions still depend on hyperparameters α and β : typically,



the MCMC version of the MDR method allows to com-
pute posterior expectations such as ẑ(α,β ) = E[z |g,α,β ]

and f̂(α,β ) = E[f |g,α,β ] or f̂ (α,β , ẑ) = E[f |g, ẑ,α,β ].
Whereas the influence of β can be assumed negligible, α
plays the crucial role of a regularization parameter:

• For arbitrary large values of α , p(z |α) tends to zero for
all label vectors z, but for constant ones. Therefore, the
estimated object will be composed of only one material.
In other words, the possible presence of defects will be
missed. Such a solution is typically over-regularized.

• For arbitrary small values of α , no spatial regularization
is imposed on the estimated object. Given the strongly
ill-posed character of the problem, the corresponding so-
lution will be typically under-regularized.

Therefore, the present paper focuses on a convenient way
to deal with α in an unsupervised framework.

To begin with, a simplification is introduced with respect
to Assumption H2: here, the distribution of f conditional
on z is assumed white Gaussian, which corresponds to the
particular case where β = 0. In the NDE context, it can be
checked that the value of β has very little influence on the
estimated solution. Thus, we have:

p(f |z,θ ) =∏
r

(
2πσ2

z(r)

)−1/2
exp

(
−

( f (r)−mz(r))
2

2σ2
z(r)

)
. (4)

On the other hand, we concentrate on the MCMC ap-
proach, which is likely to produce more reliable estimates
than the JMAP method [8]. In principle, α can be incor-
porated in the sampling steps of a MCMC scheme, so that z

and f be estimated according to ẑ = E[z |g] and f̂ = E[f |g]

or f̂ (ẑ) = E[f |g, ẑ]. The joint posterior law of (f ,z,θ ,α)
decomposes as

p(f ,z,θ ,α |g) ∝ p(g |f ,σε )p(f |z,θ )p(z |α)p(θ )p(α),

where the rhs terms are defined according to (1), (4), (2) and
to hyperprior assignments, respectively. Therefore, the addi-
tional sampling step should be performed according to

p(α |g,f ,z,θ ) ∝ p(z |α)p(α).

However, there is a notorious difficulty here: p(z |α) incor-
porates the partition function k(α) defined by (3), whose de-
pendence on α is neither explicit nor computable in a direct
way, except for a domain R of very small size, since there
are 2N terms in (3). Moreover, the exact calculation of k(α)
is known to be a NP-hard problem for non-planar graphs [9].

In the next section, a Monte Carlo method based on im-
portance sampling is proposed, which is directly inspired
from [10]. It allows to compute k(α) on a given grid of
reasonable values of α . The numerical cost of such an ap-
proach is acceptable, provided that the computation of k(α)
be performed once for all. Unfortunately, this is not possi-
ble in our NDE context because k(α) depends on the size of
the ROI, which is specific to each acquisition geometry, and
partly user-defined according to the data.

Therefore, Section 4 examines the possibility of extrapo-
lating k(α) from values tabulated for ROI of given sizes, to
the value corresponding to an ROI of another size.

3. DIRECT EVALUTION OF THE PARTITION
FUNCTION

The partition function cannot be estimated as a simple aver-
age of samples using a Monte Carlo method, since we have

k(α) =∑
z

exp(−αJ(z)) =∑
z

k(α)pα(z) = Eα [k(α)] ,

where Eα denotes the expectation relative to distribution pα .
However, the importance sampling principle allows to get
around this limitation. Indeed, the following identity is easy
to establish for all α ′, α:

k(α)

k(α ′)
= Eα ′

[ exp(−αJ(z))

exp(−α ′J(z))

]
. (5)

Moreover, the partition function is explicit for α = 0 accord-
ing to k(0) = ∑z exp(0) = 2N , which allows to determine
the remaining multiplicative constant. In practice, however,
the identity (5) provides numerically accurate sample aver-
age only if α and α ′ take close values. We are thus driven
to the following method to tabulate k(α) over a fine grid
(α0 = 0, α1, . . . , αI): for i = 1, . . . , I,

1. generate samples (z`)`=1, ...,L of pαi−1
using an appropri-

ate sampler;

2. compute logkMCMC(αi)

= logkMCMC(αi−1)+ log
(

1

L
∑
`

exp
(
(αi −αi−1)J(z`)

))

where the logarithm is taken to prevent numerical overflow
problems.

In our context, resorting to the Swendsen-Wang sampler
[11] is far more efficient than the usual Gibbs sampler to per-
form step 1, especially for large values of α , i.e., when there
are strong interactions between voxels.

Finally, let us remark that the described method is suffi-
ciently accurate for our purpose. However, in more complex
situations, there exist more powerful extensions of the same
principle [10].

4. EXTRAPOLATION METHOD FOR ROI OF
VARIABLE SIZE

4.1 Principle based on the number of cliques

To our best knowledge, there is no exact way of extrapolating
k(α) from an array of given size, to another of different size.
In this paper, we consider that, as a function of the array
dimensions (α being considered as a constant here),

k(α) mainly depends on the number of cliques, (6)

i.e., of d = (a−1)×b× c+a× (b−1)× c+a×b× (c−1)
for an array of dimensions a×b× c.

Actually, k(α) is not only a function of d, since, for in-

stance, k(0) = 2a×b×c. However, Fig. 1(a) indicates that (6)
is an operational rule of thumb, the dependency of logk(α)
with respect to d appearing as approximately linear. In this
figure, logkMCMC(α) is displayed for 5 distinct values of α
and 36 parallepipedic arrays.

Fig. 1(b) displays the relative linear regression error:

logkMCMC(α)−S(α)α

logkMCMC(α)
,
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Figure 1: (a) Normalization constant logMCMC k(α,d) as a
function of the number of cliques d for 5 values of α and

36 parallepipedic arrays1; (b) corresponding relative linear
regression error values.

where S(α) corresponds to the best L2 estimation.

Let us remark that a linear regression approach rather
based on the number of sites N turns out to produce larger
error values.

In what follows, the interpolation/extrapolation formula
logk(α) ≈ S(α)α is adopted and tested with a view to es-
timate α on grids of arbitrary dimensions, in the practical
range of ROI dimensions.

4.2 Practical validation tests

4.2.1 Extrapolation capacity

To test the extrapolation capacity of the method, an array
of size 76×51×76 has been considered, which amounts to
more than 3×105 sites and nearly 9×105 cliques.

On the one hand, the direct evaluation method of Sec-
tion 3 has been used to compute logkMCMC for α =
α0, , . . . , αI . On the other hand, the extrapolation formula has
been applied to produce indirectly estimated values logkextr

on the same grid. The two results and the relative differ-
ence are displayed on Fig. 2. The difference between the two
versions is at worst slightly higher than 3%, which seems
perfectly acceptable in our context.

Let us remark that the position of the critical point αc ≈
0.4336 with respect to the phase transition phenomenon [12]
is visible on Fig. 2(b).

1dimensions (a,b,c) of the 36 parallepipedic arrays, sorted by increasing number of cliques (from 12 to 39744):

a 2 3 4 4 4 4 4 6 6 7 20 8 9 10 12 12 14 14 14 16 18 18 18 19 19 19 20 21 21 21 22 22 22 23 23 24

b 2 3 3 4 4 4 5 6 6 8 8 8 9 10 12 12 14 14 15 16 18 18 19 19 19 20 20 21 21 22 22 22 23 23 24 24

c 2 3 3 3 4 5 5 6 7 8 3 8 10 10 12 13 14 15 15 16 18 19 19 19 20 20 20 21 22 22 22 23 23 24 24 24
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Figure 2: Comparison between MCMC-based and extra-
polation-based estimation of the partition function.

4.2.2 Estimation of α given the label field z

Let us consider the problem of estimating α in a simulated
complete data case, i.e., from a realization of an Ising field.
For each α in the grid α0, , . . . , αI , a 76× 51× 76 realiza-
tion z has been generated using the Swendsen-Wang sam-
pler. Once k(α) has been computed for the same values of
α , by either method, it is easy to obtain approximate esti-
mated values of α . For instance,

E[α |z] ≈
∑i p(z |αi)p(αi)αi

∑i p(z |αi)p(αi)

corresponds to the posterior mean for a given prior law p(α).
On Fig. 3(a), black dots and white circles indicate posterior
mean values respectively computed using kMCMC and kextr,
both for a uniform prior. We have also reported standard
deviation values, deduced from a similar sample average for
the variance.

The performance of the two methods are comparable, ex-
cept around the critical point αc, where the extrapolation
based method produces an additional error probably due to
the higher variability of k(α) near αc.

On the other hand, both perform less accurately for large
values of α . This does not reveal growing numerical errors,
but rather a loss of information: when the true value of α
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Figure 3: Estimation of α either based on kMCMC or kextr.
αMCMC is plotted along with error bars of one standard
deviation.



is large, accurate estimation of α becomes impossible from
a realization z of constant size, since the latter tends to be
uniform. Such a loss of information is clearly indicated by
error bars of length growing with α in Fig. 3(b).

Finally, let us remark that the computation of kMCMC is
already demanding for a 76×51×76 array: several hours of
computing time are necessary on an up-to-date desktop PC
(actually, much more than the total time to compute kMCMC

on the 36 arrays used to generate Fig. 1, while kextr is almost
immediate.

4.2.3 Estimation of α in the tomography context

The last test involves the simulated reconstruction of a 3D
object. The object corresponds to two defects, one on top of
the other, in an ROI of 76×51×76 voxels (more details can
be found in [2]). As seen on Fig. 4, the use of kextr in place of
kMCMC produces only slight differences in the reconstructed
object. This is not surprising since the estimated values of α
are also close: αMCMC = 1.4 and αextr = 1.3, the difference
being equal to one grid step. The result found is also very
close from the one presented in [2, Fig. 4], obtained after
empirical tuning of α (and β ).

(a) Result based on kMCMC (b) Result based on kextr

Figure 4: Reconstructed object using a MCMC method based
on either kMCMC or kextr.

5. CONCLUSION

In this paper, we have proposed a non-supervised ver-
sion of Mohammad-Djafari and Robillard’s reconstruction
method [7]. Following Higdon [10], we have resorted to a
tabulation of the partition function. However, Higdon’s ap-
proach becomes impracticable when the size of the object is
large and variable across reconstructions. Our solution is to
extrapolate the tabulated partition function to the specific di-
mensions of the region of interest. Validation tests show that
this idea reveals efficient and realistic.

The extrapolation technique could probably be improved
by accounting for both the number of cliques and the number
of sites. The numerical asymptotic results available for the
cubic Ising model could also be taken into account [12].

However, the main limitation of the reconstruction
method is to rely on a prior assigning equiprobabilities to
the two types of label: by symmetry, it is clear that (2)
implies pα(zs = 0) = pα(zs = 1) = 1/2, ∀s, α . Obvi-
ously, the potential defects obviously extend over a very
small part of the reconstructed volume. Therefore, a more
suited prior for z could incorporate an “external field”, i.e.,

p(z |α,γ) ∝ exp(−αJ(z)+ γ∑s zs) . Nonetheless, the price
to pay would be the handling of a bivariate partition func-
tion, together with additional difficulties regarding efficient
sampling [13].
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