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ABSTRACT
This paper presents the architecture of a flexible and high
performance unit for DSP applications. The proposed archi-
tecture operates based on fast Carry-Save (CS) arithmetic. A
mapping methodology, for datapaths composed with the pro-
posed flexible units, is also presented. It exploits the incorpo-
rated features of the proposed units and enables fast compu-
tations, high operation densities and advanced data reusabil-
ity. Experimental results shown that several DSP algorithms
can be mapped onto the proposed architecture with high ef-
ficiency delivering in average, latency gains of 36.56% and
45.76% compared to the MAC and the primitive resources
based datapaths, respectively.

1. INTRODUCTION

As the VLSI fabrication technology continues to scale down
the design of complex configurable hardware systems has
became a reality. In contrast with the classical FPGA-like
reconfigurable architectures [1], coarse-grained architectures
have been proposed in the bibliography [2], which preserve
flexibility and deliver high speed implementations along with
low power consumption.

Recently, the notion of domain-specific reconfigurable
logic has been introduced [3]. It includes the idea of pro-
viding only a certain amount of reconfiguration capability to
the developing ASIC, according to the desired applications’
specific needs. The Digital Signal Processing (DSP) domain
seems to be an extremely promising area for the integration
of domain-specific reconfigurable methods and architectures,
since it is dominated by data-path intensive applications with
lightweight control logic.

In order to improve DSP algorithms’ implementations,
Multiply-Accumulator (MAC) units are often allocated.
Many approaches have been presented for the design of fixed
MACs [4], [5]. They focus on performance and power opti-
mizations, but they do not take into account any reconfigura-
tion/flexibility properties.

Recently, Tatas et al [6] have proposed a reconfigurable
MAC architecture which is based on a 16×16 multiplier’s de-
composition and it can be reconfigured to adapt its structure
to the application needs, trading bitwidth for array size. In [7]
a reconfigurable MAC unit is introduced. It performs one 32-
bit multiplication or two 16-bit multiplications by splitting
the multiplier in two pieces. Both approaches propose MAC
architectures, configuring only the bitwidth of the operators.

Considering datapaths with only MAC units allocated,
DSP applications such as DCT, FFT, symmetrical FIR fil-
ters etc cannot be efficiently mapped. Several application

specific circuits have been proposed in [8], [9], [10] for op-
timized implementation of these applications. Bruguera [9]
proposed the usage of a carry-save (CS) to signed-digit (SD)
recoding scheme in order to fuse in an efficient way addi-
tion operations prior to multiplication ones. Definitions of
carry-save and signed-digit arithmetic representations can be
found in [11]. In [10] an area efficient CS to SD recoding
scheme has been presented which recodes the initial CS data
to digits proper for Booth encoding. Nevertheless, no no-
tion of flexibility has been reported for any of these type of
contributions.

In this paper, motivated by the above observations, we
propose a flexible and high performance architecture able to
execute efficiently a large set DSP operation templates. High
performance is achieved by exploiting the CS arithmetic for-
mat which eliminate the time consuming carry-propagation.
Flexibility is enabled based on small scale configurability,
by inserting a limited number of multiplexors. The proposed
architecture actually merges the MAC and the fused addition-
multiplication datapath in one unit. It combines pre- and
post-multiplication addition, and it extends the number of in-
put data operands by allowing computations on CS data for-
mats. A mapping flow based on well known High Level Syn-
thesis (HLS) heuristics [12] is also proposed, which exploits
the dense and flexible structure of the proposed architecture.
It have to be mentioned that, the proposed architecture tar-
gets the ASIC domain space rather the FPGA one [1], since
it is composed by components of coarser granularity than the
basic elements of classical FPGA devices.

The remainder of the paper is organized as follows. In
Section 2 the proposed FAMA architecture is presented in
detail. The mapping of DSP application kernels to FAMA
based datapaths is presented in Section 3. Section 4 refers to
experimental results. Finally, Section 5 concludes the paper.

2. THE FLEXIBLE FAMA ARCHITECTURE

2.1 FAMA Architecture Description
The proposed architecture is based on a carry-save Fused
Add-Multiply-Add (FAMA) unit. FAMA’s general function-
ality can be described by the following equations:

Z∗ = N∗×A+K∗ (1a)
N∗ = X∗+Y ∗ (1b)

X∗ = {XC, XS}= XC +XS (1c)

The superscripted star, ∗, denotes a redundant representation
composed of two numbers both in 2s complement form (de-
fined as 2’s complement CS form/representation). Each of
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the Z∗, N∗, Y ∗, K∗ is formed like X∗. The quantities ZC, ZS,
NC, NS, XC, XS, YC, Y S, KC, KS and A are all 2’s complement
conventional binary numbers.

The primary inputs of the unit, X∗, Y ∗, K∗, can be either
in 2’s complement conventional binary or in 2’s complement
CS form. The latter enables the direct reusability of the unit’s
output, eliminating the need for the latency intensive conver-
sion from the CS representation to the conventional binary
form.

The overall architecture of the flexible FAMA unit is de-
picted in Fig. 1. It operates on data of 16-bit wordlength,
since 16-bits enable sufficient accuracy for the majority of
modern DSP applications [13]. It consists of 1) a 2’s com-
plement numbers 4:2 CS adder (CSA), for the addition of the
input data (X∗, Y ∗), 2) the recoding scheme, 3) a tree based
adder for the addition of the partial products, 4) the final CS
accumulation unit implemented by a 4:2 CSA and 5) a con-
figuration register.

The upper 4:2 CSA (see Fig. 3) computes the N∗ =
X∗ +Y ∗ which can be used either in the pre- or the post-
multiplication addition. Input A has to be in 2’s complement
binary numeric representation.

At next, the 2’s complement CS formed data, N∗ or
K∗, are driven to the recoding unit. The recoding unit per-
forms the conversion from CS format to SD format and sub-
sequently the conversion of each signed digit to the Sign-
Magnitude (SM) digit representation. The recoding unit is
presented in more detail in Section 2.2. For now, we support
signed digits, D j, ranging between [-1, 1], but this scheme
can easily be extended (i.e in a Modified’s Booth) for even
more efficient implementations of the multiplier.

The Sign-Magnitude (SM) [11] digits (sgn(D j), |D j|) are
passed through the partial product generation component to-
gether with the input A. The Signed Partial Products (SPPjs)
are generated based on the following logic function.

SPPj = (A⊕ sgn(D j)) · |D j| ·2 j (2)

If the magnitude of the signed digit D j is zero then
the partial product is also zero. If |D j| = 1 the input A is
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”XORed” with the sgn(D j). That is, if the D j has a nega-
tive value, sgn(D j) = 1, the input X is complemented. When
sgn(D j) = 0, the D j has a positive value and remains the
same (Fig. 2). In case of negative D j, the ”XORed” A has
to be incremented by 1, to form the correct 2’s complement
inverted number. This increment is performed inside the tree
CS adder, taking into account the weights of the SPPj’s bits.

We decide to use a tree based multiplier trading with a
more canonical multiplication scheme, because tree multipli-
ers deliver high performance gains. For 16-bit data, we need
3 levels of 4:2 CS adders. In case of Modified Booth encod-
ing 2 levels of 4:2 adders are sufficient. The main princi-
ples can be adapted in other multiplication schemes, i.e array
multipliers, in a straightforward manner. Because the paper
focuses on the overall architecture and the mapping oppor-
tunities it reveals, we neglect further details about the core
multiplier’s circuit.

The final CS accumulation unit is a 4:2 CSA with two
fixed inputs (the multipliers output bits) and two configurable
inputs. All the inputs of the accumulation unit are in 2’s com-
plement CS format. The configured inputs are either the N∗
derived from the initial 4:2 CSA or an independent CS input
number (K∗).

The configuration register controls the operation mode of
the unit and the signs of the input numbers, by driving with
proper control logic bits (CLi) the multiplexors and the sign
selection inside each 4:2 CSA module. It is loaded in a cycle
by cycle basis.

2.2 The Recoding Module
The recoding module enables the addition prior to multipli-
cation to be performed without introducing any propagation
delay. The detailed structure of the recoding module, for
n = 4-bit data, is illustrated in Fig. 3. The module can be
partitioned in three stages.

The first stage implements the addition of four 2’s com-
plement binary number resulting at a CS format. It consists
of two lines of full adder (FA) cells. Given that the most sig-
nificant bit in the 2’s complement form has a negative value,
the two left-most cells are slightly modified. They are com-
posed by FA cells with inverters at the negative values’ input
and output ports [8]. Actually, this stage is implemented by
the 4:2 2’s complement CS adder (Fig. 3). The CS represen-
tation of X∗+Y ∗ is generated according to the next relation:

FA0, j(XS
j ,X

C
j ,YC

j ) = {S0, j,C0, j+1} (3a)

FA1, j(S j,C j,Y S
j ) = {S j,C j+1} (3b)

where the S0, j and the C0, j+1 bits are the sum and carry bits
of the full adder at the first row. FA0, j and the S j,C j+1 bits
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Figure 3: A 4-bit 4:2 CS Adder and Recoding Unit.

are the bits which form the 2’s complement CS form, respec-
tively. The result with n+1 digits is also in 2’s complement
CS form.

At next, the CS form has to be recoded to the SD format.
This recoding operation is performed by the second stage,
CS to SD conversion. This module comprises of n + 1 cells
which operate on each CS input digit. The first n cells are
identical (the # modules in Fig. 3). Their truth table is de-
picted in Fig. 4 (Table A). The SD representation of the input
data is generated according to the next relations:

D−
j = S j⊕C j (4a)

D+
j+1 = S j +C j (4b)

where D−
j and D+

j+1 have negative and positive value, respec-
tively. Each D j digit consists of the (D+

j ,D−
j ) bits and ranges

between [-1,1].
Taking into account that the most significant CS digit

(C0,n,C1,n) is formed by 2 bits with negative values, the logic
function of the left-most cell ($ ) is different and its logic
function is described by Table B in Fig. 4.

The last recoding stage (SD to SM) encodes the SD dig-
its to their SM format. For n + 1 CS digits the CS-SD mod-
ule generates n + 2 output digits and the last stage SD-SM
requires n+2 cells of type &. At each SM digit sgn(D j) rep-
resents the D j’s sign and the |D j| represents the D j’s magni-
tude. The truth table of the cell of type & is given in Table C
and its logic function is:

sgn(D j) = D−
j (5a)

|D j|= D−
j ⊕D+

j (5b)

The most significant SM digit is generated from the negative
valued SD−

n bit and a 0 positive valued bit. So the consistency
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Figure 4: The Recoding Truth Tables.

of the SM representation is maintained. The output digits of
the SD to SM recoding unit are forwarded, together with the
input A, to the signed partial product generation unit (Fig.
2), described in Section 2.1 to initialize the multiplication
process.

It is worth to be noticed that the 4:2 CSA, the CS to SD
and the SD to SM conversion modules are carry-propagation-
less circuits, contributing to the critical path by the delay of
3 full adders, approximately.

3. APPLICATION MAPPING ONTO FAMA
DATAPATHS

The proposed FAMA architecture enables the execution of
complex and computationally expensive operation templates.
Recent research activities [14], [15] from the HLS field have
shown that DSP applications can benefit in terms of per-
formance and power consumption by using resources that
implement efficiently computational templates of chained
operations. In [15] a large number of different template-
based hardware resources is generated augmenting the sy-
stem’s heterogeneity. In [14] the authors proposed an gener-
alized coarse-grained reconfigurable template, named FCC,
to tackle the heterogeneity problem of such synthesized data-
paths. However, each FCC reconfigurable cell comprises a
large number of computational elements (4 ALU units and 4
multipliers) which in each control step are not fully utilized.

The FAMA architecture is an intermediate solution en-
abling lower heterogeneity of the synthesized datapaths com-
paring with the [15] approach, without spanning so many
hardware resources as in [14]. Each FAMA resource sup-
ports a large library of operation templates. In Fig. 5 the
FAMA’s template library is illustrated, considering primary
inputs in the 2’s complement CS form. FAMA delivers high
speed computations exploiting the Carry-Save arithmetic op-
eration without surcharging the datapath’s controller due to
its small configuration word.

The mapping procedure onto datapaths composed by
FAMA units consists of 3 major steps. At first, the Control-
Data-Flow-Graph (CDFG) of the application’s initial speci-
fication is extracted. The CDFG captures the control flow of
the application between the Basic Blocks (BBs) and the data
flow in each BB. The BBs are executed sequentially. When
the execution proceeds between the BBs proper control sig-
nals are generated to drive the control flow of the computa-
tion. The operation level parallelism is exploited inside each
BB by the constructing the BB’s Data-Flow-Graph (DFG).

After the CDFG’s extraction each BB’s DFG is parsed
and a clustering procedure takes place in order to transform
the initial DFG into a FAMA based DFG (Fig. 6). The in-
puts and the output of each DFG node are assumed to be in
2’s complement CS format in order to be consistent with the
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general execution case. Conventional binary inputs can be
modeled as a partial case. The clustering is based on the cov-
erage of the DFG in respect to the template library of Fig. 5.
The FAMA based DFG (F-DFG) expresses the initial specifi-
cation in terms of the new resource space. In case that there is
a conflict during the clustering process (i.e in which FAMA
cluster has to belong a primitive operation node, when two
clusters overlap) a refereed criterion is evaluated. In our case,
this refereed criterion drives the conflict nodes to the cluster
that encapsulates the larger number of DFG nodes belong-
ing in the initial DFG’s critical path. Due to the facts that 1)
the FAMA’s output is in 2’s complement CS data format and
2) that the FAMA’s multiplier can hold only one CS format-
ted operand, when an edge between two operations clustered
in different sets is identified and if the sink DFG node is a
multiplication operation, this edge is marked to indicate to
the scheduler that a conversion (=simple addition with carry-
propagation) is required from the CS format to the conven-
tional binary form.

The new data dependencies of the FAMA based DFG
are calculated and the graph is fed to a modified resource
constrained List-Based Scheduler [12], which considers re-
sources of the FAMA type. The modified scheduler dis-
tributes the nodes of the F-DFG among the control-steps
and the available hardware resources based on the mobility
(=ALAP-ASAP value) of each node. The nodes with smaller
mobility are executed first. The modified scheduler also re-
spects the marked edges of the F-DFG interleaving a arith-
metic conversion step in the proper cases and takes into ac-
count the CS formatted intermediate results. The scheduler
has been designed for mixed resource allocation scenarios
composing of FAMA units and conventional binary primi-
tive resource circuits. In case that all the resources are based
on CS arithmetic the scheduler is simplified, given that it has
not to consider the CS formatted intermediate results.

4. EXPERIMENTAL RESULTS

This section demonstrates the advanced mapping capabilities
offered by the proposed architecture. Our benchmark suite
includes five DSP computational intensive kernels shown at
the first column of Table 1. The DSP kernels are represented
by their innermost Data-Flow Graphs (DFGs).

We experiment with three different resource allocation
scenarios. An upper-bound constraint of 3 ALU units has

been imposed in each scenario. The first scenario consid-
ers the allocation of 2 FAMA units, the second scenario the
allocation of 2 MAC units, while the third scenario consid-
ers the resource constraint of 2 Wallace multipliers. Under
the above resource constraints, the benchmark DFGs were
scheduled with a mobility based list-scheduler [12].

The time-frame for one control step was set separately
for each allocation scenario based on the component with the
longest critical delay found in each scenario. Accuracy of 16-
bit has been considered. So, for the FAMA-based datapath
the clock-cycle was set to 5.2 ns. For the MAC based data-
path the cycle delay was set to 5.4 ns, taking into account the
carry-propagation final adder delay overhead, while for the
multiplier-based datapath the clock period was set to 4 ns.
The aforementioned clock cycle periods are based on [16]
for the TSMC 0.13 standard cell library [17], and they were
coarsely estimated considering the delays of the individual
components which form each datapath.

Table 1 shows the number of DFG nodes for each bench-
mark and the utilization ratio of the two FAMA instances
(FAMAA,FAMAB). FAMAA has high utilization ratio of
100%. FAMAB unit has a significantly lower utilization of
61.76% in average. The main reason that this happens is the
mapping strategy we apply considering FAMAA as the pri-
mary FAMA unit. In case of a 7 taps symmetrical FIR (Finite
Impulse Response) filter (Sym FIR7), where the utilization
ratio of FAMAB is zero, only one FAMA unit is allocated.
Maximum utilization of both FAMA resources is observed
in the 4-point FFT (Fast-Fourier Transform) benchmark, be-
cause it incorporates many alu-mul-alu operations along with
high parallelism features.

Table 2 records the number of allocated resources in data-
paths composed by 1) FAMA units, 2) MAC and ALU units,
3) Wallace multipliers (MULs) and ALU units. It can be
seen that FAMA based datapaths, unlike the MAC and MUL
based datapaths, are able to execute the overall DFG com-
putation without any extra allocated hardware units. Thus,
using FAMA units high performance datapaths (Fig. 7) with
low heterogeneity and high hardware utilization can be im-
plemented. In case of the final results have to be in con-
ventional binary format, a carry-propagate adder can be allo-
cated for the final CS to binary conversion. There is no need
to use a faster type of adder, considered that the critical path
of a FAMA unit is much longer than the critical path of a
carry-propagate adder.

Table 3 illustrates the comparative results for the three
resource assignment scenarios. The execution cycles and the
cycle gain, using FAMA units, are reported for each scenario
case. In average the FAMA based datapath delivers cycle
gains of 28.54% compared with the MAC based datapaths
and of 82.82% compared with the datapaths composed by
primitive resources. FAMA based datapaths of Elliptic filter
and FFT delivers the highest cycle gains. For the 8-point Dis-

Table 1: DFG’s Node Count and Usage in the FAMA based
Datapath.

Benchmark DFG FAMAA FAMAB
nodes Utilization Utilization

Fir11 21 100% 40%
Sym FIR7 20 100% 0%
FFT 18 100% 100%
DCT 24 100% 88.8%
Elliptic 39 100% 80%
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Table 2: Allocated Resources using FAMAs, MACs and
MULs.

Benchmark No. of No. of No. of No. of No. of No. of
FAMA ALUs MAC ALU MUL ALU

Fir11 2 0 2 0 2 2
Sym FIR7 1 0 1 1 2 2
FFT 2 0 2 3 2 3
DCT 2 0 2 3 2 3
Elliptic 2 0 2 3 2 3

Table 3: Comparative Performance Results (No. of Cycles).
Benchmark FAMA MAC Cycle MUL Cycle

Based Based Gain (%) Based Gain (%)
Fir11 9 9 0 12 33.3
Sym FIR7 7 8 14.2 8 14.2
FFT 7 9 28.5 14 100
DCT 9 9 0 15 66.6
Elliptic 5 10 100 15 200
Average - - 28.54% - 82.82%
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Figure 7: Comparative Latency Results.

crete Cosine Transform (DCT) benchmark, the FAMA based
datapath is scheduled with the same cycle count as the MAC
based. This is happened due the fact that the initial additions
are performed by FAMA units configured to operate the T3
operation template (Fig. 5). However, it has to be mentioned
that only two FAMA units have been allocated, while in case
of the DCT MAC-based datapath three extra ALU resources
has been considered (Table 2).

Comparative latency results are depicted in Fig. 7. An
average latency gain of 36.56 % and 45.76 % is achieved by
FAMA based datapaths in comparison with the other two al-
location scenarios. Elliptic filter presents the largest latency
reduction with two FAMA units required, while the MAC
based datapath needs 2 MACs and 3 extra ALU units. At
FIR11 and Symmetrical FIR7 filters, the FAMA’s datapath
delivers latency reduction at significantly smaller ranges be-
cause MAC based datapath are highly tuned for this type of
applications.

5. CONCLUSION

In this paper, we presented a flexible hardware architecture
which enables the execution of complex DSP operation tem-
plates. A mapping procedure onto the the proposed flexible
architecture was also introduced.

Future work will focus onto the low level implementation
and the extensive experimentation of the proposed architec-
ture to evaluate more robustly its hardware characteristics.
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