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ABSTRACT

Recent theoretical developments in the field of blind source
separation (BSS) introduced the score function difference
(SFD) and showed its close relationship with the differential
of the mutual information. These results are of great interest
for developing BSS methods since the mutual information
can be seen as the canonical cost function for BSS. However
these results were only proposed in the real case. In this pa-
per, we extend these results to the complex case and propose
a frequency domain approach of BSS based on the complex
equivalent of the SFD.

1. INTRODUCTION

The goal of BSS is to recover some signals, called sources,
when only some mixtures of these sources are observed. This
problem has received much attention for the last decades re-
sulting in several algorithms and applications (see book [1]).
Recently, theoretical developments [2, 3, 4, 5] introduced the
score function difference (SFD) and showed its importance
in BSS. In particular a theorem expresses the differential of
the mutual information as a function of the SFD.
However, these results were only derived for real valued BSS
preventing their use in fields like acoustic signal processing,
where the frequency domain approach of BSS (FD-BSS),
which implies complex valued BSS, is prevalent (see review
paper [6]).
The main contribution of this paper is the extension of the
theorem concerning the differential of the mutual informa-
tion to the complex case. This leads to the definition of the
complex equivalent of the SFD. Then we also present a FD-
BSS algorithm based on this new result and illustrate its ef-
fectiveness by some numerical simulation using real mea-
surements.

2. PRELIMINARIES

2.1 Blind source separation

Figure 1 represents the simplest BSS model. The multidi-
mensional observed signal V (t) = [v1(t), . . . ,vn(t)]

T is as-
sumed to be an instantaneous linear mixture of the unknown
signal S(t) = [s1(t), . . . ,sn(t)]

T , called source vector. The
mixing process is represented by the relation

V (t) = AS(t)

where A is a n×n matrix.
The estimate Y (t) of the source vector is obtained by ap-

plying a n×n matrix B to the observed signal (see Fig. 1)

Y (t) = BV (t).

Unknown

Figure 1: Blind source separation model.

The determination of the matrix B is based on the following
theorem (see [7] and reference in [1]).

Theorem 1.
If the components of S(t) are statistically independent and
have non Gaussian distribution, then the components of Y (t)
are statistically independent if and only if B is such that

Y (t) = BAS(t)

= PΛS(t)

where P is a n× n permutation matrix and Λ is a diagonal
n×n matrix. �

Namely, assuming that the components of S(t) are statisti-
cally independent and have non Gaussian distribution, it is
possible to recover them up to scaling and permutation by
finding B such that the components of Y (t) are statistically
independent. In the following section, we will present the
framework for iterative blind separation algorithms based on
Theorem 1.

2.2 Iterative algorithms

As a result of Theorem 1, a large class of the BSS meth-
ods are using a cost function measuring the statistical depen-
dency among the components of Y (t), say a function J(Y (t))
that is minimum when the components of Y (t) are statistical
independent. In fact this cost function is a function of the
separating matrix B since Y (t) = BV (t). Thus the separating
matrix B can be estimated by an iterative algorithm minimiz-
ing the cost function.

Let Bk denotes the separation matrix at iteration k, the
natural gradient descent update rule of Bk is

Bk+1 = Bk − µk

∂

∂B
J(Y (t))|kBT

k Bk

=

(

I− µk

∂

∂B
J(Y (t))|kBT

k

)

Bk

where µk is a positive adaptation step and ∂
∂B

J(Y (t))|k is the
gradient of the cost function with respect to B at iteration
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Figure 2: Time domain convolutive mixture and equivalent
frequency domain instantaneous mixtures.

k. Consequently, iterative algorithms are defined by the cost
function used and the gradient of the cost function has to
be estimated at each iteration. Several cost functions were
proposed (see reference in [1]), but most of them are approx-
imations of the mutual information of Y (t) or equivalent to it
(defined in next section).

2.3 Differential of mutual information: Real case

This section presents a recent result concerning the differen-
tial of the mutual information [2, 3, 5]. The motivation is the
ability to derive the gradient of the mutual information from
its differential in a simple way. Moreover this approach is
less sensitive to estimation bias present in most of the meth-
ods based on cost functions that approximate the mutual in-
formation.

The mutual information of the real random vector X =
[x1,x2, . . . ,xn]

T is defined by

I(X) =

∫

P(X) log
P(X)

∏n
i=1 P(xi)

dX .

It is a non negative quantity that equals zero if and only if the
random variables xi are statistically independent.

Theorem 2 (Theorem 2 in [3])
The differential of the mutual information with respect to a
small variation of X → X +∆X is

I(X +∆X)− I(X) = E
{

∆T
Xβ (X)

}

+ o∆X (1)

where β (X) is the score function difference (SFD). �

The SFD is a n× 1 vector which is the difference of the
marginal score function and the joint score function β (X) =
φ(X)−Φ(X). The ith entry of the marginal score function is

{φ(X)}i = −
∂

∂xi

logPxi
(xi)

and the ith entry of the joint score function is

{Φ(X)}i = −
∂

∂xi

logPX(X).

2.4 Frequency domain blind signal separation

In a reverberant environment, the propagation of n sounds
from their locations of emission until a n element micro-
phone array is modeled by a convolutive mixture of size n×n
(left side of Fig. 2). The frequency domain model of the mix-
ture is obtained by applying a short time Fourier transform
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Figure 3: FD-BSS model at frequency bin f .

(STFT) using a F points analysis frame to the observed sig-
nals. In the remainder of the paper t denotes the frame index.
In the frequency domain, the n× n convolutive mixture is
transformed in F instantaneous mixtures of size n×n (right
side of Fig. 2). At the f th frequency bin, the observed signal
V ( f ,t) is

V ( f ,t) = A( f )S( f ,t)

where the n× n complex valued matrix A( f ) represents the
instantaneous mixture and S( f ,t) is the emitted signal com-
ponents at the f th frequency bin, (see Fig. 3).

In FD-BSS, the component of the emitted signals in each
frequency bin, S( f ,t), are estimated by applying a n×n com-
plex valued matrix B( f ) to the observed signals (see 1)

Y ( f ,t) = B( f )V ( f ,t).

Theorem 1 in Sect.2.1 is also valid for complex mixtures.
If the components of S( f ,t) are statistically independent, the
component of Y ( f ,t) are statistically independent if and only
if B( f ) is such that

Y ( f ,t) = P( f )Λ( f )S( f ,t)

where P( f ) is a n×n permutation matrix and Λ( f ) is a diag-
onal n×n complex valued matrix.
Namely, it is possible to recover the components of S( f ,t)
up to scaling and permutation indeterminacy by finding the
matrix B( f ) that gives statistically independent estimates.

In FD-BSS, after performing blind separation in each of
the frequency bins, it is mandatory to resolve the permuta-
tion indeterminacy before transforming the separated signals
back to the time domain otherwise the time signals will not
be separated. For this reason FD-BSS architectures includes
a permutation resolution method that forces all P( f ) to be
equal. Several algorithms were proposed to estimate B( f )
in each bins and resolve the permutation indeterminacy (see
review paper for references [6]).

3. MAIN RESULTS

3.1 Mutual information differential: Complex case

In this section, we will extend the result of Theorem 2 to the
complex case and define the complex score function differ-
ence (CSFD).

A complex random variable z is defined as a random vari-
able z = x+ i y where x and y are real random variables. The
probability density function Pz(z) of z is the joint probability
density function Pz(z) = Pxy(x,y). The mutual information of
the complex random vector Z = [z1, . . . ,zn] with zi = xi + i yi

is noted

Ic(Z) =

∫

PZ(Z) log
PZ(Z)

∏n
i=1 Pzi

(zi)
dZ. (2)



Theorem 3
The differential of the complex mutual information relatively
to a small variation of Z → Z +∆Z is

Ic(Z +∆Z)− Ic(Z) = E
{

Re
{

(∆Z)Hβc(Z)
}}

+ o{∆Z} (3)

where βc(Z) is the complex score function difference
(CSFD). �

The CSFD is the difference between the complex
marginal score function and the complex joint score function
βc(Z) = φ(Z)−Φ(Z). The complex marginal score function
is a n×1 vector with ith entry

{φ(Z)}i = −

(

∂

∂xi

logPzi
(xi,yi)+ i

∂

∂yi

logPzi
(xi,yi)

)

. (4)

The complex joint score function’s ith entry is

{Φ(Z)}i = −

(

∂

∂xi

logPZ(Z)+ i
∂

∂yi

logPZ(Z)

)

(5)

where PZ(Z) = Px1,y1,...,xn,yn(x1,y1, . . . ,xn,yn).

Proof of Theorem 3
First we express the mutual information using the joint prob-
ability density functions of the real and imaginary parts of
the complex random variables. Introducing these joint prob-
ability density functions in (2) we get

Ic(Z) =

∫

Px1,y1,...,xn,yn(x1,y1, . . . ,xn,yn)

× log
Px1,y1,...,xn,yn(x1,y1, . . . ,xn,yn)

∏n
i=1 Pxi,yi

(xi,yi)
dx1 . . .dyn.

By multiplying both the numerator and the denominator of
the logarithm’s argument with ∏n

i=1 Pxi
(xi)Pyi

(yi) we obtain

Ic(Z) =

∫

Px1,y1,...,xn,yn(x1,y1, . . . ,xn,yn)

× log
Px1,y1,...,xn,yn(x1,y1, . . . ,xn,yn)

∏n
i=1 Pxi

(xi)Pyi
(yi)

dx1 . . .dyn

−

∫

Px1,y1,...,xn,yn(x1,y1, . . . ,xn,yn)

× log
∏n

i=1 Pxi,yi
(xi,yi)

∏n
i=1 Pxi

(xi)Pyi
(yi)

dx1 . . .dyn

Expanding the second integral gives

Ic(Z) = I(x1,y1, . . . ,xn,yn)−
n

∑
i=1

I(xi,yi). (6)

The variation Z → Z +∆Z can be broken down into

xi → xi +∆xi

yi → yi +∆yi
.

Using (6) we rewrite the left hand side of (3)

Ic
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Applying Theorem 2 to obtain the differential of the mutual
information for the real case yields

Ic(Z +∆Z)− Ic(Z) =

E
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−
n

∑
i=1

{

E
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+ o{∆Z}.
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and re-ordering the terms in the first part of the right hand
side of (7) we obtain

Ic(Z +∆Z)− Ic(Z) =

E
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With the definition of the SFD we have
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Then we rewrite the term inside the expectation of (8) as
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Grouping the g(xi) and g(y j) according to (4) and (5) we
have





g(x1)+ i g(y1)
...

g(xn)+ i g(yn)



 = βc(Z).

Finally combining the two previous equations and (8) we ob-
tain

Ic(Z +∆Z)− Ic(Z) = E
{

Re
{

(∆Z)Hβc(Z)
}}

+ o{∆Z}.

3.2 Blind signal separation algorithm

In [2, 3, 5], the authors use Theorem 2 to derive a BSS
method based on the SFD. It is possible to obtain the equiva-
lent method for complex mixtures using Theorem 3 to com-
pute the gradient of the mutual information with respect to
the separating matrix B.

Considering the estimate

Y (t) = BX(t)

where all terms are complex valued, for a small variation
B → B +∆B, the output variation is Y → Y +∆BX (we drop
index t in the following). With Theorem 3 we get

Ic(Y +∆BX)− Ic(Y ) = E
{

Re
{

(∆BX)Hβc(Y )
}}

+ o{∆BX}.

Using this differential and defining the (i j)th entry of B
as

bi j = bi jR + i bi jI ,

we obtain the derivative of the mutual information with re-
spect to the real and imaginary parts

∂ Ic(Y )

∂bi jR

= E

{

Re
{

x?
jβc(Y )(i)

}}

,

∂ Ic(Y )

∂bi jI

= E

{

Re
{

−ix?
jβc(Y )(i)

}}

= E

{

Im
{

x?
jβc(Y )(i)

}}

where ? denotes the complex conjugate operator. Conse-
quently the complex derivative is

∂ Ic(Y )

∂bi jR

+ i
∂ Ic(Y )

∂bi jI

= E

{

x?
jβc(Y )(i)

}

.

Rewriting the previous result in matrix form we have

∂ Ic(Y )

∂B
= E

{

βc(Y )XH
}

.

Using this expression, we can define an iterative blind
separation algorithm based on the natural gradient descent as
in Sect.2.2. Let Bk denotes the separation matrix at iteration
k and define Yk(t) = BkX(t) then the update rule is

Bk+1 =
(

I− µk E
{

βc(Yk)X
H
}

BH
k

)

Bk

=
(

I− µk E
{

βc(Yk)Y
H
k

})

Bk (9)

where µk is a positive adaptation step. This is the complex
version of the algorithm presented for the real case in [3, 5]
(Note that the proposed complex gradient E

{

βc(Yk)X
H
}

co-

incides with the expression in the real case E
{

β (Yk)X
T
}

).

3.3 Estimation of complex score function difference

The proposed algorithm requires the estimation of the CSFD.
Since the frequency domain signal are obtained by using a
short time Fourier transform, we can assume that all the sig-
nals are circular, i.e. the joint density of their modulus and
phase is separable [8].

For n = 2, if y1( f ,t) and y2( f ,t) are circular and inde-
pendent then (the frame index t and frequency index f are
dropped)

βc(y1,y2) =

[

∂
∂ |y1|

logP(|y2|/|y1|)
y1
|y1|

∂
∂ |y2|

logP(|y1|/|y2|)
y2
|y2|

]

(10)

= β (|y1|, |y2|)◦

[ y1
|y1|
y2
|y2|

]

where ◦ denotes the element wise product.
In practice, to estimate the CSFD, we obtain the condi-

tional distributions from a kernel base estimate of the joint
distribution P(|y1|, |y2|). Then we use finite difference to ob-
tain the derivatives of the conditional probabilities that ap-
pear in the log derivate in (10). This is a crude estimate of
the CSFD as the SFD estimate used in [3].

4. SIMULATIONS

To illustrate the effectiveness of the proposed method, we
compare its performance with a BSS method based on adap-
tive score function for a speech/speech separation task. A
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Figure 4: Experimental setting.

two microphone array was used to record the impulse re-
sponses from different locations in a room with a 200 ms
reverberation time. These impulse responses were used to
generate mixtures of speech signals. We considered three
mixtures of two speakers. For all mixtures the speakers are
at 60 degrees on the right and the left of the microphone array
but the distances d are set to 1, 1.5 and 2 meters (see Fig. 4).
For each position five different sets of signals are used. Each
set is composed of Japanese sentences read by one female
and one male speaker (from the JNAS database [9]). The av-
erage length is 10s. The sampling frequency is 16 kHz and
the short time Fourier transform is performed with 512 points
hanning windows having 50% overlap.

The reference BSS method is a complex version of IN-
FOMAX [10] with nonlinearities that are adaptively esti-
mated from the data and converges to the marginal score
functions of the source φ(S) [11]. The estimation of the
marginal score function also assume circularity [8]. With the
same notation as in (9) the update rule is

Bk+1 =
(

I− µk

(

I−E
{

φ(Yk)Y
H
k

}))

Bk.

For both approaches the permutation indeterminacy is re-
solved with the method based on direction of arrival pro-
posed in [12].

The quality of the separation is measured in term of noise
reduction rate (NRR in dB): NRR 1 = SNR of speech 1 after
processing (in the estimate) - SNR of speech 1 before pro-
cessing (in the observation). A positive NRR means that the
estimate quality is improved.

In all the experiments, the proposed method (SFD)
achieved an average NRR comparable (slightly better) to the
reference method (Score) (see Fig. 5, the plotted NRR is the
average of NRR 1 and NRR 2 for all set of signals).

However, in the current form, the proposed method has a
higher computation cost because of the joint density estimate
used to estimate the SFD (mean computation time is 12 time
longer). The proposed algorithm is a simple illustration of
the complex valued SFD as the algorithm in [3] is for the
real case. To obtain an efficient FDBSS algorithm based on
CSFD, the techniques used in [13, 5] should be extended to
the complex case.

5. CONCLUSIONS

In this paper, we extended a theorem giving the differential
of the mutual information to the complex case by defining the
CSFD. We also presented a simple FDBSS algorithm based
on CSFD. This paves the way to the use of SFD based BSS
method in the frequency domain. This is of particular in-
terest for acoustical signal processing applications where the
frequency domain approach of BSS is widespread.
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