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ABSTRACT

Most music genre classification techniques employ pattern
recognition algorithms to classify feature vectors extracted
from recordings into genres. An automatic music genre clas-
sification system using tensor representations is proposed,
where each recording is represented by a feature matrix over
time. Thus, a feature tensor is created by concatenating the
feature matrices associated to the recordings. A novel al-
gorithm for non-negative tensor factorization (NTF), which
employs the Frobenius norm between an n-dimensional raw
feature tensor and its decomposition into a sum of elemen-
tary rank-1 tensors, is developed. Moreover, a supervised
NTF classifier is proposed. A variety of sound description
features are extracted from recordings from the GTZAN
dataset, covering 10 genre classes. NTF classifier perfor-
mance is compared against multilayer perceptrons, support
vector machines, and non-negative matrix factorization clas-
sifiers. On average, genre classification accuracy equal to
75% with a standard deviation of 1% is achieved. It is
demonstrated that NTF classifiers outperform matrix-based
ones.

1. INTRODUCTION

In the research community, automatic genre classification
applications attempt to classify recordings into distinguish-
able genres by extracting relevant features and employing
pattern recognition algorithms [1]. A large amount of lit-
erature on automatic music genre classification exists. Sev-
eral benchmark audio collections have been used for exper-
iments, making the various genre classification approaches
comparable, as can be seen in Table 1. Common classifiers
employed in music genre applications are Gaussian mixture
models (GMMs), support vector machines (SVMs), and lin-
ear discriminant analysis (LDA). Closely related topics to
music genre classification are mood and style recognition as
well as artist identification [2].

In this paper, the problem of automatic genre classifica-
tion is addressed by employing multilinear techniques. In
the field of multilinear algebra, tensors are considered as
the multidimensional equivalent of matrices or vectors [3].
In our approach, each recording is represented by a matrix
containing features over time, thus creating a more detailed
and natural representation of signal characteristics. Conse-
quently, all recordings are represented by a feature tensor.
Such a representation allows capturing the rich time-varying
nature of short-term features and preserves their integrity
without unnecessarily mixing spectral and temporal features
in the same vector. A novel algorithm for analyzing and clas-
sifying multidimensional data is proposed, originating from
non-negative matrix factorization (NMF). The algorithm is
called non-negative tensor factorization (NTF) and is able to
decompose a tensor in a sum of elementary rank-1 tensors.

E. Benetos was a scholar of the “Alexander S. Onassis” Public
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Table 1: Notable results on genre classification approaches.
Reference Dataset Classifier Best Accuracy
Tzanetakis et al. [8] GTZAN GMM 61.0%
Li et al. [9] GTZAN SVM - LDA 78.5%
Lidy et al. [1] GTZAN SVM 74.9%
Lidy et al. [1] MIREX 2004 SVM 70.4%
Pampalk et al. [10] MIREX 2004 NN - GMM 82.3%
Bergstra et al. [11] MIREX 2005 Decision stumps 82.34%

The algorithm employs as a distance measure the Frobenius
norm, which belongs to general category of Bregman diver-
gences [6]. Bregman divergences have been previously used
to solve the non-negative matrix approximation problem [7].
In addition, a supervised classifier for NTF is proposed, em-
ploying basis orthogonalization. Experiments are performed
on the GTZAN database, which contains 1000 audio record-
ings covering 10 music genre classes. Several standard state-
of-the-art classifiers are also tested on the same database,
including multilayer perceptrons, support vector machines,
and classifiers based on NMF, such as the standard NMF,
the local NMF, and the sparse NMF. Genre classification
accuracy results show 75% genre classification accuracy for
the NTF classifier using the Frobenius norm. In general, the
superiority of the NTF classifier against the just mentioned
classifiers is demonstrated.

The outline of the paper is as follows. Section 2 describes
the NMF method and its variants. Section 3 is devoted to
the proposed NTF method and the previous approaches pro-
posed for NTF. The proposed algorithm is presented, along
with the proposed NTF classifier. Section 4 describes the
data set used and the employed feature set. The standard
state-of-the-art classifiers are discussed and the experimen-
tal results are presented in Section 4 as well. Conclusions
are drawn and future directions are indicated in Section 5.

2. NON-NEGATIVE MATRIX
FACTORIZATION

NMF is a subspace method able to obtain a parts-based rep-
resentation of objects by imposing non-negative constraints
[12]. The problem addressed by NMF is as follows. Given
a non-negative n×m data matrix V, find the non-negative
matrix factors W and H in order to approximate the original
matrix as:

V ≈WH. (1)

The n × r matrix W contains the basis vectors and the
columns of the r ×m matrix H contain the weights needed
to properly approximate the corresponding column of matrix
V as a linear combination of the columns of W.

To find an approximate factorization in (1), a suitable
objective function has to be defined. In [12], the general-
ized Kullback-Leibler (KL) divergence between V and WH
was used. The minimization of the objective function can
be solved by using iterative multiplicative rules [12]. The lo-
cal NMF (LNMF) algorithm aims to impose spatial locality
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in the solution and consequently to reveal local features in
the data matrix V [13]. The sparse NMF (SNMF) method
is inspired by sparse coding, aiming to impose constraints
that can reveal local sparse features in V [14]. It should
be noted that the performance of the SNMF algorithm de-
pends upon the choice of sparseness parameter. In [7], a
more general view of the NMF is provided under the so-
called non-negative matrix approximation (NNMA). Instead
of minimizing a single objective function, Sra et al. propose
the minimization of Bregman divergences (cf. Section 3.2).

3. NON-NEGATIVE TENSOR
FACTORIZATION

3.1 Tensor Definition

In the field of multilinear algebra, tensors are considered as
multidimensional generalizations of matrices and vectors [3].
A higher-order real-valued tensor of n dimensions is defined
over the vector space R

I1×···In , Ii ∈ Z, i = 1, . . . , n and is
represented by A. Each element of tensor A is addressed by
n indices, Ai1i2...in . Basic operations can be defined on ten-
sors. The symbol ×n stands for the n-mode product between
a tensor and a matrix [3]. For example, the n-mode product
between a tensor A ∈ R

I1×I2×I3 and a matrix B ∈ R
I2×J is

represented by a tensor (A×2 B) ∈ R
I1×J×I3 .

3.2 Bregman Divergences

Bregman divergences were proposed by Bregman in 1967 [6].
They are defined as:

Dφ(x, y) = φ(x)− φ(y)− φ′(y)(x− y), (2)

where φ() is a strictly convex function defined on a convex
set S ⊆ R and φ′() denotes the first-order derivative of φ().
Bregman divergences are non-negative [7] and their defini-
tion can be extended to tensors. For φ(x) = 1

2
x2, Dφ(x, y)

corresponds to the Frobenius norm. For φ(x) = x log(x),
the corresponding Bregman divergence becomes the KL di-
vergence, while for φ(x) = − log(x), the resulting Dφ(x, y)
is the Itakura-Saito (IS) distance. Although in this paper
we deal with the Frobenius norm, the proposed algorithm
in Section 3.4 can handle all the aforementioned Bregman
divergences.

3.3 Previous Approaches

In 2005, Shashua and Hazan proposed a generalization of
the NMF algorithm for N -dimensional tensors [15] build-
ing on the previous work of Welling and Weber [16] and
provided a proof of convergence. The problem was formu-
lated as a decomposition of a tensor into a sum of k rank-1
tensors, when the Frobenius norm was used as a distance
measure. Heiler and Schnörr proposed a generalization of
the SNMF algorithm for 3-dimensional tensors [17]. The
Frobenius norm was used as a distance measure and the al-
gorithm was termed as sparsity-constrained NTF. Shifted
NTF algorithms, which extend the shifted NMF ones, were
proposed for multichannel sound separation of harmonic in-
struments in [18]. In 2007, Cichocki proposed algorithms for
3-dimensional NTF using alpha and beta divergences [19].
It should be noted that this model cannot be generalized to
higher-dimensional tensors or degenerate to the NMF model
in the two-dimensional case.

3.4 Proposed NTF Algorithm

We aim at creating a generalized algorithm for n-dimensional
tensors, which can degenerate to the NMF algorithm for
n = 2. Our work is inspired by Shashua and Hazan’s work
[15], which can be applied to n-dimensional tensors and de-
generates to NMF when n = 2. Therefore, the goal of NTF

is to decompose a tensor V ∈ R
I1×I2×···×In into a sum of k

rank-1 tensors:

V =
k∑

j=1

uj
1 ⊗ uj

2 ⊗ · · · ⊗ uj
n (3)

where⊗ stands for the Kronecker product and uj
i ∈ R

Ii
+ . The

following minimization problem is considered using Bregman
divergences:

min
u

j
i≥0

Dφ

( k∑
j=1

uj
1 ⊗ uj

2 ⊗ · · · ⊗ uj
n,V

)
. (4)

The minimization of (4) can be achieved using auxiliary func-
tions. For the Frobenius norm, the following multiplicative
update rule is obtained for uj

i :

uj
i(l) ← ũj

i(l) ·
∑I1···Ii−1Ii+1···In

i1...ii−1ii+1...in
A · Vi1...l...in∑I1···Ii−1Ii+1···In

i1...ii−1ii+1...in
A ·B

. (5)

where uj
i(l) is the l-th element of vector uj

i for j = 1, . . . , k,

i = 1, . . . , n, l = 1, . . . , Ii, ũj
i(l) is the l-th element of vector uj

i

before updating, A = uj
1(i1) . . . uj

i−1(ii−1)u
j
i+1(ii+1) . . . uj

n(in),

and B =
∑k

m=1 um
1(i1) . . . ũm

i(l) . . . um
n(in). The indices on A

and B are suppressed for notation simplicity. The proof of
(5) is omitted.

In order to apply the aforementioned NTF algorithms
for an n-dimensional tensor V, n matrices Ui, i = 1, . . . , n,
should be created with dimensions Ii × k. Matrices Ui are
initialized using random numbers between 0 and 1. The
update rule (5) is applied to each matrix Ui, for j = 1, . . . , k
and l = 1, . . . , Ii.

Although MATLAB implementations of NTF are avail-
able [20, 21] we preferred to implement our NTF from first
principles in order to fully control the procedure. More ad-
vanced optimization techniques, such as the projected gradi-
ent method or the fixed point alternating least squares [21],
did not offer a higher classification accuracy.

3.5 Proposed 3D-NTF Classifier

The novel NTF classifier for 3-dimensional tensors extends
the NMF classifier proposed in [22], where each class was
trained separately and the test data are projected onto an
orthogonalized basis. The proposed 3D NTF classifier con-
siders a tensor V ∈ R

I1×I2×I3 , where I1 is the data dimen-
sion, I2, I3 are the feature dimensions, and C is the number
of classes. Let � stand for the Khatri-Rao product (column-
wise tensor product). The classifier is defined as follows:
1. Perform training on each class separately:

Vξ =

k∑
j=1

uj
1 ⊗ uj

2 ⊗ uj
3 = (U2(ξ) � U3(ξ))×3 U1(ξ), (6)

where ξ = 1, . . . , C and U1(ξ) is a I1(ξ) × k matrix, with
I1(ξ) being the number of training data for class ξ. Ma-
trix U2(ξ) has dimensions I2 × k and matrix U3(ξ) has
dimensions I3 × k. Matrices U1(ξ), U2(ξ), and U3(ξ) are

created by concatenating the respective vectors uj
1, uj

2,

and uj
3. Thus, (U2(ξ) � U3(ξ)) is a I2 × I3 × k tensor.

2. Convert (6) into matrix unfoldings [3]:

Vξ = (U2(ξ) �U3(ξ)) ·UT
1(ξ). (7)

Where � stands for the column-wise Kronecker product.
Thus, (U2(ξ)�U3(ξ)) has dimensions I2I3×k, while ma-
trix Vξ has dimensions I2I3 × I1(ξ).
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3. Perform QR decomposition on basis matrix (U2(ξ) �
U3(ξ)):

(U2(ξ) �U3(ξ)) = Qξ ·Rξ (8)

where Qξ is a I2I3 × k column-orthogonal matrix (i.e.

QT
ξ Qξ is the k × k identity matrix)1 and Rξ a k × k

upper triangular matrix. Store matrices Qξ and Hξ,

where Hξ = Rξ · UT
1(ξ). It is worth noting that the

Gram-Schmidt orthogonalization does not affect the non-
negativity of the basis matrix. It is used to calculate
correctly the L2 norms in a non-orthogonal basis.

4. For testing, the feature matrix of dimensions I2×I3 Vtest

is considered. The feature matrix is projected onto basis
matrices of the several classes:

hξ
test = QT

ξ ·Vtest. (9)

Vector hξ
test has length k.

5. For each class, vector hξ
test is compared with each column

of matrix Hξ, using the cosine similarity measure (CSM).

The vector h
(ξ)
j that maximizes the CSM for class ξ is

calculated as a measure of similarity for the class:

CSMξ = max
j=1,2,...,k

{
hξ T

testh
(ξ)
j

‖hξ
test‖‖h(ξ)

j ‖

}
, (10)

where h
(ξ)
j is the j-th column of matrix Hξ. Finally, the

class label of the test matrix Vtest is determined by the
maximum among CSMξ, i.e.:

ϑ = arg max
ξ=1,2,...,C

{CSMξ}. (11)

4. EXPERIMENTAL PROCEDURE

The GTZAN database was employed for genre classifica-
tion experiments, containing 1000 audio recordings cover-
ing 10 music genres [8]. The following genres represented in
the database are: Classical, Country, Disco, HipHop, Jazz,
Rock, Blues, Reggae, Pop, and Metal. Each genre is repre-
sented by 100 recordings. All recordings are mono channel,
are sampled at 22.050 Hz sampling rate, and have a duration
of approximately 30 sec. Each recording is separated into 30
segments, therefore each segment has a duration of 1 sec.

In this paper, a combination of features originating from
GAD classification and the MPEG-7 audio framework is ex-
plored. The complete list of extracted features is summa-
rized in Table 2. It should be noted that for each audio
frame of 10 msec duration, 24 Mel-frequency cepstral coeffi-
cients and 8 specific loudness sensation [10] coefficients are
used. Except features 10-12, the 1st and 2nd moments of
features computed on a frame basis, as well as their deriva-
tives, are computed. This explains the factor 4 in Table 2.
In total, 187 features are extracted for each segment. All
extracted features apart from the MFCCs are non-negative,
therefore they can be employed for NTF classification. For
the MFCCs, their magnitude is employed. Computing the
aforementioned features over time is facilitated within the
NTF context. Finally, a data tensor V was created with
dimensions 1000× 187× 30.

In order to reduce the feature set cardinality, a suitable
subset for classification has to be selected. The branch-and-
bound search strategy is employed for complexity reduction,
using the ratio of the inter-class dispersion over the intra-
class dispersion as a performance measure [5]. The feature
selection algorithm is employed using the matrix unfolding

1Obviously, QξQ
T
ξ is not the identity matrix.

Table 2: Feature set.
No. Feature # Values per segment
1 MPEG-7 AudioPower (AP) 1× 4 = 4
2 MPEG-7 AudioFundamentalFrequency (AFF) 1× 4 = 4
3 Total Loudness (TL) 1× 4 = 4
4 Specific Loudness Sensation (SONE) 8× 4 = 32
5 MPEG-7 AudioSpectrumCentroid (ASC) 1× 4 = 4
6 Spectrum Rolloff Frequency (SRF) 1× 4 = 4
7 MPEG-7 AudioSpectrumSpread (ASS) 1× 4 = 4
8 AudioSpectrumFlatness (ASF) 4× 4 = 16
9 Mel-frequency Cepstral Coefficients (MFCCs) 24× 4 = 96
10 Auto-Correlation Values (AC) 13
11 MPEG-7 Log Attack Time (LAT) 1
12 MPEG-7 Temporal Centroid (TC) 1
13 Zero-Crossing Rate (ZCR) 1× 4 = 4

Total number of features 187

Table 3: Classification accuracy for 80 selected features.
Classifier 70%-30% Split 90%-10% Split
NMF 58.77% 62.00%
LNMF 64.11% 64.33%
SNMF 1 (λ = 0.1) 57.44% 64.66%
SNMF 2 (λ = 0.001) 57.55% 66.66%
MLP 65.33% 72.00%
SVM 64.00% 73.00%
NTF 64.66% 75.00%

of the data tensor [3]. Thus, from tensor V ∈ R
1000×187×30

the unfolding V(2) ∈ R
187×1000·30 was created. After experi-

mentation, 80 features were selected out of the 187. Most of
the selected features belong to the class of MFCCs.

The performance of the NTF classifier is compared
against that of multilayer perceptrons (MLPs), SVMs, and
NMF classifiers. In particular, a 3-layered perceptron with
a logistic activation function is utilized. Learning is based
on the back-propagation algorithm, with learning rate equal
to 0.3, for 500 training epochs, and momentum equal to 0.2.
A multi-class SVM classifier with a 2nd order polynomial
kernel is also used. Finally, the NMF, LNMF, and SNMF
classifiers were employed. Two instances of the SNMF clas-
sifier were used with sparseness parameter equal to 0.1 and
0.001, respectively [14]. Experiments were performed using
the matrix unfolding V(2).

Experiments were performed for the subset of 80 selected
features. Two different training/test set splits were tested,
namely 70%-30% and 90%-10%. It is worth noting that most
genre classification experiments have been tested using 90%-
10% splits. Concerning the NTF classifiers, the value of
parameter k is set experimentally. More specifically, it is
set to 65 when 70%-30% splits are used and 62 when the
90%-10% splits are used.

The classification accuracy for the subset of 80 selected
features is given in Table 3. It can be seen that the high-
est classification accuracy of 75.0% is achieved by the NTF
classifier when the 90%-10% split is employed. It should be
noted that the standard deviation of the NTF classifier ac-
curacy is found to be 1% after 10 fold cross-validation. The
classification rate outperforms that reported by Tzanetakis
in [8] (61.0%) and Lidy in [1] (74.9%), but is inferior to the
rate achieved by Li [9] (78.5%). In general, the NTF classifier
attains higher classification rates than those achieved by the
SVM classifier. As far as the NMF classifiers are concerned,
it is clear that they are inferior to the SVM, MLP, and NTF
classifier. The highest rate reported by the NMF classifiers
is 66.6% for the SNMF 2 classifier, which still outperforms
the rate reported in [8]. Therefore, it can be deduced that
the NTF classifier outperforms the corresponding NMF clas-
sifiers.

Next, the statistical significance of the differences in
recognition rates between the NTF classifier and the SVM
and MLP classifiers is addressed, employing the method de-
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Table 4: Confusion matrix for the NTF classifier, using the
80 selected features set and 90%-10% splits.

Genre Blues Classical Country Disco Hiphop Jazz Metal Pop Reggae Rock
Blues 10 0 0 0 0 0 0 0 0 0
Classical 0 8 1 0 0 0 0 0 1 0
Country 0 0 7 0 0 2 1 0 0 0
Disco 1 0 0 7 0 1 0 1 0 0
Hiphop 0 0 0 3 7 0 0 0 0 0
Jazz 0 0 1 0 0 9 0 0 0 0
Metal 0 0 0 0 1 0 9 0 0 0
Pop 1 0 0 0 1 0 0 6 1 1
Reggae 0 0 1 0 2 1 0 0 6 0
Rock 0 0 0 2 0 0 0 1 1 6

scribed in [23]. It can be shown that the performance gains
for the NTF classifier are not statistically significant against
the SVM and MLP classifiers at 95% confidence level. On
the contrary, the performance difference between the NTF
classifier and the NMF classifiers is found to be statistically
significant at 95% confidence level. It should be noted that
the difference of 3.5% between the one-vs-the-rest SVMs em-
ployed by Li [9] and the NTF classifier is statistically insignif-
icant as well.

Insight to the performance of the NTF classifier is offered
by the confusion matrix in Table 4. The columns of the con-
fusion matrix correspond to the predicted music genre and
the rows to the actual one. For the Frobenius NTF classi-
fier, most misclassifications occur among the Pop, Reggae,
and Rock genres.

5. CONCLUSIONS - FUTURE WORK

In this paper, a novel algorithms for NTF has been devel-
oped, as well as an NTF classifier that employs basis orthog-
onalization has been proposed. The classification accuracy
reported in this paper indicates that multilinear techniques
when employed in classification can yield promising results
compared to vector-based machine learning techniques. In
the future, NTF experiments can be performed using the
ISMIR 2004 and 2005 datasets. Moreover, additional fea-
tures could be employed, exploring the rhythmic content of
the recordings, for example the rhythm and periodicity his-
tograms. In addition, NTF algorithms could be extended
to deal with multi-genre classification. Finally, various ini-
tialization techniques could be tested for NTF algorithms to
speed up their convergence and various Bregman divergences
could be employed.

REFERENCES

[1] T. Lidy and A. Rauber, “Evaluation of feature ex-
tractors and psycho-acoustic transformations for music
genre classification,” in Proc. 6th Int. Conf. Music In-
formation Retrieval, pp. 34-41, September 2005.

[2] M. I. Mandel, G. E. Poliner, and D. P. W. Ellis, “Sup-
port vector machine active learning for music retrieval,”
Multimedia Systems, vol. 12, no. 1, pp. 3-13, 2006.

[3] L. De Lathauwer, “Signal Processing Based on Multilin-
ear Algebra”, Ph.D. Thesis, K.U. Leuven, E.E. Dept.-
ESAT, Belgium, 1997.

[4] MPEG-7, “Information Technology-Multimedia Con-
tent Description Interface-Part 4: Audio,” ISO/IEC
JTC1/SC29/WG11 N5525, March 2003.

[5] F. van der Hedjen, R. P. W. Duin, D. de Ridder, and
D. M. J. Tax, Classification, Parameter Estimation and
State Estimation, London UK: Wiley, 2004.

[6] L. M. Bregman, “The relaxation method of finding the
common points of convex sets and its application to the
solution of problems in convex programming,” USSR
Computational Mathematics and Mathematical Physics,
Vol. 7, pp. 200-217, 1967.

[7] S. Sra and I. S. Dhillon, “Nonnegative matrix approxi-
mation: algorithms and applications,” Technical Report
TR-06-27, Computer Sciences, University of Texas at
Austin, 2006.

[8] G. Tzanetakis and P. Cook, “Musical genre classifica-
tion of audio signals,” IEEE Trans. Speech and Audio
Processing, Vol. 10, No. 5, pp. 293-302, July 2002.

[9] T. Li, M. Ogihara, and Q. Li, “A comparative study
on content-based music genre classification,” in Proc.
26th Annual ACM Conf. Research and Development in
Information Retrieval, pp. 282-289, July-August 2003.

[10] E. Pampalk, A. Flexer, and G. Widmer, “Improvements
of audio based music similarity and genre classification,”
in Proc. 6th Int. Symp. Music Information Retrieval,
pp. 628-633, 2005.

[11] J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B.
Kegl, “Aggregate features and AdaBoost for music clas-
sification,” Machine Learning, vol. 65, nos 2-3, pp. 473-
484, 2006.

[12] D. D. Lee and H. S. Seung, “Algorithms for non-
negative matrix factorization,” Advances in Neural In-
formation Processing Systems, Vol. 13, pp. 556-562,
2001.

[13] S. Z. Li, X. Hou, H. Zhang, and Q. Cheng, “Learning
spatially localized, parts-based representation,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition,
pp. 1-6, 2001.

[14] C. Hu, B. Zhang, S. Yan, Q. Yang, J. Yan, Z. Chen,
and W. Ma, “Mining ratio rules via principal sparse
non-negative matrix factorization,” in Proc. 2004 IEEE
Int. Conf. Data Mining, pp. 407-410, November 2004.

[15] A. Shashua and T. Hazan, “Non-negative tensor fac-
torization with applications to statistics and computer
vision,” in Proc. 22nd Int. Conf. Machine Learning, pp.
792-799, August 2005.

[16] M. Welling and M. Weber, “Positive Tensor Factoriza-
tion,” Pattern Recognition Letters, vol. 22, pp. 1255-
1261, 2001.
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