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ABSTRACT

Discrete time—frequency distributions (DTFDs) of dis-
crete signals differ from their continuous counterparts. The
DTFD is usually aliased and lacks some desirable mathemat-
ical properties inherent to the continuous distribution. The
DTFD should, ideally, be free from aliasing and conserve
all desirable properties. Two existing DTFD definitions,
namely the generalised DTFD (GDTFD) and the alias-free
GDTFD (AF-GDTFD), approximate this ideal: the GDTFD
does not satisfy all desirable properties but is alias free; the
AF-GDTFD satisfies most properties but is not always alias
free. We propose, in this article, a new DTFD definition
which is alias free and satisfies all desirable properties.

1. INTRODUCTION

Time—frequency distributions (TFDs) are two dimensional
representations of signal energy in the joint time—frequency
domain. The most commonly used TFDs belong to the
quadratic class [1]. The Wigner—Ville distribution (WVD)
is an important member of this class—it satisfies more desir-
able mathematical properties compared with other distribu-
tions in the class. Its definition, for signal z(¢), is

W)= [

—oo

2(t+ 5z (t — 3)e P dr. (1)
In addition, the WVD is a fundamental member of the

quadratic class as all other quadratic TFDs are related to the
WVD as follows:

pe(t.f) = W6, )55 7(1, f) )

where (¢, f) is the time—frequency kernel and * represents
the convolution operation.

A digital device, such as a computer, requires a sam-
pled TFD. This sampled TFD must be discrete in both time
and frequency—that is, a discrete-time, discrete-frequency
TFD, or discrete TFD (DTFD) for short. We cannot sim-
ply sample the TFD in the time—frequency domain to obtain
the DTFD; rather, we must form the DTFD from the dis-
crete time-domain signal. Ideally, the DTFD should equal
a sampled TFD and satisfy all the desirable properties of
the continuous distribution. This situation is, unfortunately,
not attainable [2-13]. (The desirable properties, which we
shall discuss later, are a set of commonly presented proper-
ties [2-5,7,9,10].)

There are two widely used DTFD definitions—namely,
the generalised discrete TFD (GDTFD) [6, 8, 14] and the
alias-free GDTFD (AF-GDTFD) [9, 10]. The AF-GDTFD,

as the name suggests, claims to be an alias-free version of
the GDTFD. But this is not completely correct [4, 10, 11], as
the AF-GDTFD merely has the potential to suppress alias-
ing, similar to the way cross-terms are suppressed by defin-
ing an appropriate kernel [1] for the distribution. Thus, the
amount of aliasing removed from the distribution depends
on the structure of the kernel. Nonetheless, the AF-GDTFD
conserves most of the desirable properties. The GDTFD, in
contrast, is alias free; it does not, however, use all the avail-
able signal information and therefore does not satisfy all de-
sirable properties.

In this article, we present a new method for defining
DTFDs. This proposed DTFD remains alias free, regardless
of the kernel structure, and satisfies more desirable proper-
ties than either the GDTFD or the AF-GDTFD satisfy. The
disadvantage in using this DTFD is an increased computa-
tional load. For an N-point time-domain signal, the proposed
DTFD generates a 2N by 2N matrix, whereas the GDTFD
and AF-GDTFD generate N by N matrices.

2. REVIEW OF EXISTING METHODS

To define a DTFD, we require a discrete WVD (DWVD)
and a discrete kernel—as shown for the continuous case in
(2). Because the kernel is independent of the signal, we can
sample the kernel in any of the four related domains, as-
suming a closed-form expression for the kernel exists in that
domain. These four domains—namely, the time—frequency,
time-lag, doppler—lag, and doppler—frequency domains—are
related by discrete Fourier transforms. Also, if we assume
that the kernel is time and frequency bandlimited, then the
discrete kernel will be alias free. The difficulty arises, how-
ever, when forming the DWVD, as we cannot sample the
WVD in the time—frequency domain. Instead, we must form
the DWVD from the discrete-time signal.

Different methods for defining the DWVD exist, which
we briefly review here. These definitions form the bases for
the more general DTFD definitions.

2.1 Discrete Wigner—Ville Distributions

We assume that the signal we wish to analyse is the real-
valued signal s(z). The complex-valued signal z(¢) in (1) is
the analytic signal, derived from the real-valued signal s(¢);
we use this signal to avoid cross-terms between positive and
negative frequencies in the distribution [1].

To form the WVD we follow two simple steps: construct
the time-lag function K (¢,7) = z(t + 7/2)z*(t — 7/2) from
the signal z(7), and then Fourier transform this function to the
time—frequency domain. We use a similar process to form the
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DWVD.

Two conditions are necessary to form an alias-free
DWVD from the discrete signal s(nT) [5, 13]. (We assume
that the N-point signal s(nT') is Nyquist sampled with sam-
pling period T'.) First, we obtain the discrete analytic signal
z(nT) from s(nT) [13], and second, we zero-pad z(nT) to
length 2N and call this zero-padded signal y(nT). We then
use y(nT) to form the DWVD [2,4, 13].

The zero-padding procedure, however, introduces some
energy into the negative frequency spectrum for Y (k/2NT),
where Y (k/2NT) is the discrete Fourier transform (DFT) of
y(nT). Therefore, the DWVD of y(nT) is not truly alias
free [5,13]. In this article, however, we refer to the DWVD of
y(nT) as alias free, so we can distinguish between the alias-
ing caused by using the real-valued signal s(nT), which is
significant, and the aliasing caused by using the zero-padded
analytic signal y(nT), which is typically small in compari-
son. In [13, 15], we propose a simple procedure for reducing
aliasing in the DWVD of y(nT).

2.1.1 Ideal Sampling Approach

Ideally, we should sample the time-lag function K(¢,7), in
both time and lag, with sampling period 7" to obtain the func-
tion K9\ (»T mT). Fig. la illustrates this sampling grid.
This discrete time—lag function, in terms of y(nT), is

K;,deal (nT,mT) =y((n+5)T)y* ((n—5)T). 3)
Unfortunately, we cannot generate this function because we
only have samples of y(nT) when 7 is an integer.

2.1.2 Sampling Approach A

Claasen and Mecklenbriuker [2] proposed a simple alterna-
tive to the ideal sampling approach by just ignoring the lag
samples in (3) when m is odd. This procedure uses the dis-
crete grid illustrated in Fig. 1b to obtain the discrete function
KA(nT,2mT). Unlike the ideal discrete time—lag function,
we can generate Kf (nT,2mT) from the discrete analytic sig-
nal:
Kf(nT7 2mT) =y((n+m)T)y* ((n—m)T).

To compute the DWVD, we simply discrete Fourier

transform (DFT) KyA (nT,2mT):

2N—1
WA (T, 557 ) = Z K} (nT,2mT )e 7™/N (4
forn,k=0,1,... N—1.

The full time—frequency region of support for the DWVD
of y(nT) is 0 <t < 2NT and |f| < 1/2T. The DWVD in
(4), however, is defined over the reduced region 0 <t < NT
and 0 < f < 1/2T—a quarter of the size of the full time—
frequency region. Nonetheless, the DWVD WvA is periodic
over this quarter-plane region: )

W (nTv 21]\;T) WyA((n_pN)Ta (k_qN)ﬁ)
where p,q are integers. We call a distribution, that is peri-
odic over the quarter time—frequency region, a quarter-plane
distribution; likewise, we call a distribution, periodic over

the full time—frequency region, a full-plane distribution. The

DWVD WA is, therefore, a quarter-plane distribution.
The continuous and discrete distributions are closely
related—the DWVD W approximates samples of the WVD:
WA (nT

Wy (nT

’2NT) ’2NT)

for n,k=0,1,...,N — 1. This equality is not exact because
y(nT) does not meet the two conditions for a completely
alias-free DWVD [5, 13], as we discussed previously.

2.1.3 Sampling Approach B

Chan [3] proposed another approach for sampling the time—
lag function. The method uses a nonuniform sampling
grid, illustrated in Fig. Ic. The resultant time-lag function
KB(nT /2,mT), for even—odd values of 7, is

Ky (nT,2mT) = y((n+m)T)y*((n—m)T)
KB((n+ 3T, @m+1)T) =y((n+m+ 1)T)y*((n—m)T).
The DWVD is the DFT of time-lag function:
2N-1

= L Ky

forn,k=0,1,...,2N — 1. This distribution, like the DWVD
WA is also a quarter-plane distribution.

Also, like the DWVD WA, it approximates samples of
the continuous WVD:

B k Y\~ T k
W(274NT) Wy(%uuTT)

o—immk/ (2N
W 2’4NT romk/(2N) ()

forn,k=0,1,...,2N —1.

Sampling approach A and B differ; discrete grid B uses
more sample points compared with grid A—Fig. la and
Fig. 1c illustrate. The advantage of using the denser sam-
pling grid, when forming W8, is that all the available signal
information is used. The benefit of this is that WB satisfies
more desirable properties, such as Moyal’s formula and the
frequency marginal, than W* satisfies [3, 5].

Similar to W”, W® is periodic over the quarter-plane dis-
tribution, although an extra multiplicative factor is present:

WP (4 awvr) = (=)W ((n— p2N) £, (k—g2N) 4Nf6))
The two DWVDs are closely related [4,5]: WA is a deci-

mated, in time and frequency, version of WB__that is,
A B/2 2
WA (nT, 557) = Wy (355, 237)- (7

2.2 Discrete Time-Frequency Distributions
2.2.1 Generalised-DTFD method

The method to form the generalised DTFD (GDTFD) [6, 8,
14] is as follows. First, define the doppler-lag kernel g(v, )
within the region |v| < 1/2T and |t| < NT. Second, sample
this kernel in the time—lag domain with discrete grid A, as
discussed in Section 2.1.2. Third, map this discrete time—
lag function to the time—frequency domain, using the DFT,
to obtain the time—frequency kernel Y (nT,k/2NT). Fourth,
form the DWVD WyA defined in (4). Lastly, convolve the
time—frequency kernel with the DWVD:

A A
P (T 3g) = Wy (0T 3i7) € ¥ (0T, 377
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Figure 1: Different time-lag (¢, t) sampling grids with sampling period T': (a) ideal discrete grid (nT,mT), (b) discrete grid

A (nT,2mT), and (c) discrete grid B (nT /2,mT).

The symbol ® represents the circular convolution operation.
The relation between the GDTFD and the continuous
WVD and kernel is

P (T 57 ) ~ Wa(n T ) @ @ ¥(n T, 3y7)

for n,k=0,1,...,N — 1. The reason for the approximation
was discussed in Section 2.1.2 in relation to the DWVD. In
this article, we do not consider the potential artefacts intro-
duced by the circular convolution [16] as aliasing; thus, we
call the GDTFD alias free.

2.2.2 Alias-free GDTFD method

The method to form the alias-free GDTFD (AF-GDTFD)
[9, 10] is as follows. First, define the doppler—lag kernel
g(v, ) within the region |v| < 1/T and |t| < NT, which
is a larger region in the doppler direction than that for the
GDTFD. Second, sample the time-lag kernel with sam-
pling grid B, as discussed in Section 2.1.3. Third, map
this discrete time-lag function to the time—frequency do-
main, using the DFT, to obtain the time—frequency kernel
yA¥(nT /2,k/2NT). Fourth, form the DWD WE, defined in
(5), using the N-point real-valued signal s(nT). Then, peri-
odically extend the quarter-plane distribution WB to a full-
plane distribution so W2 extends from 0 <t < NT and |f| <
1/2T. Lastly, convolve the DWD with the time—frequency
kernel:

AF B / / F / /
PT ) = W o) ® 8 PR o)

n K

n=2n' k=2k'

forn,k=0,1,...,N—1. We consider only the even values
of n and k from the convolution, as the odd values are zero.
Because we have defined the DWD WP and kernel yAF as
full-plane distributions, the DTFD pAF is also a full-plane
distribution.

We can relate the AF-GDTFD to the continuous WVD
and the continuous kernel:

P (nT, 57) ~

1 1
Z Z(_l)n m+1k 7lmNVVS((n/ _ lN)%, (k/ —mN) 21$]T)
m=01[=0

n K

®® (7, m%)]
n=2n' k=2k'

Thus, as the AF-GDTFD is based on an aliased DWVD, it
will not be alias free. These aliasing components, however,
may be suppressed by the convolution operation with the
time—frequency kernel.

3. PROPOSED METHOD

We form the proposed DTFD as follows. First, define the
doppler-lag kernel g(v, t) within the region |v| < 1/2T and
|t| < NT. Second, sample the kernel in the time-lag do-
main with a uniform sample grid—sample in time and lag
with period 7. This uniform sampling grid is illustrated in
Fig. la. Third, map this discrete time—lag function to the
time—frequency domain, using the DFT, to obtain the time—
frequency kernel YV (nT,k/2NT). Fourth, form the alias-free
DWVD W8 of y(nT), as discussed in Section 2.1.3. Lastly,
convolve the DWVD with the time—frequency kernel:

UnT  k y_ wBnT _k == U Kk
py (5 an7) =W, (%,W)C?C}?Y (0T, 557 )-

for n,k=0,1,...,2N — 1. The symbol & represents a mod-
ified circular convolution operation that compensates for the
nonstandard periodic form of WB in (6)—caused by the
nonuniform discrete grid of KB. The proposed DTFD has
the same periodic relation as WB in (6), and is, therefore, a
quarter-plane distribution.

The proposed DTFD is related to the continuous WVD
and continuous kernel as follows:

Py (4 avr) A W abr) @@ YT, i)

for n,k =0,1,...,2N — 1. Thus, like the GDTFD, the pro-
posed DTFD is alias free. (Again, we do not call the potential
artefacts produced by the circular convolution as aliasing.)

3.1 Relation with AF-GDTFD and GDTFD

We can easily show that the proposed DTFD is closely re-
lated to the GDTFD:

Py (5h axr) = oy (T ). ®

Hence the GDTFD is contained within the proposed DTFD,
just as the DWVD WA is contained within the DWVD W8,
as described in (7).

Even though the AF-GDTFD and proposed DTFD both
use the DWVD WE| they are not directly related because of
the following.
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1. The AF-GDTFD uses the time-domain Nyquist sampled
signal s(nT'). We have assumed that this N-point signal is
real valued, although it could be a complex-valued, non-
analytic signal. The proposed DTFD uses the 2N-point
zero-padded analytic signal y(nT).

2. The kernel gAF is defined, in the doppler-lag domain
(v,7), over the region |v| < 1/T and |t| < NT. The
region for gU, however, extends over the smaller region
|[v| < 1/2T and |7| < NT. (Although both doppler-lag
kernels have the same extent in the lag direction, this is
a comparatively smaller region for the proposed DTFD
because this distribution uses a 2N-point signal, whereas
the AF-GDTFD uses an N-point signal.)

3. The two time—lag kernels GA and GU have different dis-
crete grids: the AF-GDTFD kernel GAF (nT /2, mT) has
a nonuniform discrete grid, illustrated in Fig. 1c; the pro-
posed kernel GY(nT,mT) has a uniform discrete gird, il-
lustrated in Fig. la.

4. The AF-GDTEFD is a full-plane distribution—it is peri-
odic over the time—frequency (¢, f) region 0 <t < NT
and |f| < 1/2T; the proposed DTFD is a quarter-plane
distribution—it is periodic over the smaller region 0 <
t<NTand0< f<1/2T.

3.2 Properties

Here we present a set of properties, inherent to the continu-
ous TFD given a particular kernel constraint, which the dis-
crete distribution should, ideally, satisfy [1-3,5,7,9,10]. Ta-
ble 1 shows importance of the proposed DTFD: only this dis-
tribution satisfies all of these properties.

As discussed in the introduction, the WVD is an impor-
tant distribution in the class of quadratic TFDs. Moyal’s for-
mula and signal recovery are two important properties of a
DWVD [1-3,5,7]. The DWVD contained within the AF-
GDTFD does not completely satisfy these properties.

The AF-GDTFD satisfies Moyal’s formula under a cer-
tain kernel constraint [10]—but the DWVD satisfies this con-
straint only when N is odd [17]. The same is true for the
signal recovery property—that is, the DWVD from the AF-
GDTEFD satisfies the signal property only when N is odd.

4. EXAMPLE

We present an example to illustrate the difference be-
tween the AF-GDTFD and the proposed DTFD. Each dis-
tribution uses three different doppler—lag kernels: a lag-
independent kernel, which uses a Hamming window; a
doppler-independent kernel, which uses a Hanning window;
and a separable kernel, which combines the Hamming and
Hanning windows [1].

The test signal we use is a linear frequency modulated
(LFM) signal:

s1(nT) = cos (271(0.1n+0.3n% /128))

forn=0,1,....N—1, where N =64 and T = 1. The AF-
GDTFDs of s;(nT), using the three different kernels, are
plotted in Fig. 2. The plots indicate that the amount of alias-
ing suppressed is dependent on the kernel. Others have noted
this behaviour [10, 11].

The proposed DTFD, which first transforms the real-
valued signal s;(nT) to the 2N-point zero-padded analytic
signal, is also plotted in Fig. 2 for the three different kernels.

Table 1: Discrete properties for the three DTFDs.
GDTFD AF-GDTFD Proposed

DTFD
real . ) °
nonnegative ) ° °
TF covariance . ° °
time marginal . ° °
freq. marginal . °
time support ) °
freq. support . .
IF ) ° °
group delay ° °
Moyal’s formula o! .
signal recovery o .
Legend: IF: instantaneous frequency; TF: time—

frequency; e: property satisfied;
I DWVD satisfies this property for N odd only.

The distribution is clearly different from the AF-GDTFD: it
is alias-free for all kernels. We do not plot the GDTFD here
as it is merely decimated version of the proposed DTFD, as
detailed in (8).

S. CONCLUSION

We proposed a new DTFD definition which—unlike either
the GDTFD or the AF-GDTFD—satisfies all presented prop-
erties and is alias free. We call the distributions alias free, as
we did not consider the potential artefacts arising from either
the circular convolution operations or the signal’s approxi-
mation of the finite-time, finite-bandwidth constraint as alias-
ing. The proposed DTFD requires a larger time—frequency
array than the other definitions require: for an N-point sig-
nal, the proposed DTFD contains 2N by 2N samples points,
whereas the GDTFD and AF-GDTFD contain N by N sam-
ple points.
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