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ABSTRACT

The proportionate normalized least mean-square algorithm
(PNLMS) has been proposed with the objective of improving
the adaptation convergence rate when modeling high-order
sparse finite impulse response systems. Whereas fast ini-
tial adaptation convergence rate is obtained with the PNLMS
algorithm for white-noise input, slow convergence is ob-
served for colored input signals. In this paper, we derive a
new proportionate-type NLMS algorithm which employs a
wavelet transform and sparse adaptive subfilters, and results
in better convergence rate than the PNLMS algorithm for
colored input signals. Simulation results for the digital net-
work echo canceler application illustrate the convergence im-
provement obtained with the proposed approach when com-
pared to the NLMS, PNLMS and other recently proposed
proportionate-type algorithms.

1. INTRODUCTION

It is well known that the convergence of adaptive filtering
algorithms becomes slow when the number of coefficients
is very large. However, in many applications, such as dig-
ital networks and acoustical echo cancelers, the system be-
ing modeled has a sparse impulse response, that is, most
of its coefficients have small magnitudes. The conventional
adaptation techniques, such as the least-mean-square (LMS)
and recursive least-squares (RLS) algorithms, do not take
into account the sparseness characteristics of such systems.
To improve the convergence for these applications, several
methods have been proposed recently, which employ indi-
vidual step-sizes for the updating of different coefficients.
The adaptation step-sizes are made larger for the coefficients
with larger magnitudes, resulting in a faster convergence for
the most significant coefficients. This idea was first intro-
duced in [1], resulting in the so-called proportionate NLMS
(PNLMS) algorithm. Improved versions of such a proce-
dure were presented in [2], [3]. Even though the initial con-
vergence and the tracking abilities of such methods are im-
proved when compared to the LMS and NLMS algorithms,
the also well-known slow convergence of the gradient-based
adaptation procedures for colored input signals is not eased
by such approaches.

In this paper, we combine the ideas of the PNLMS algo-
rithm, for improving the adaptation convergence rate when
modeling sparse impulse responses, and of the transform-
domain adaptive algorithm, for accelerating the convergence
for colored input signals. The proposed method employs a
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Figure 1: Adaptive subband structure composed of a wavelet
transform and sparse subfilters.

wavelet transform to decompose the input signal and sparse
adaptive subfilters. For the updating of the adaptive coef-
ficients, the step-size normalization is performed separately
for each subfilter, taking into account the magnitudes of its
coefficients and the spectral characteristics of the input sig-
nal. A transform-domain PNLMS-type algorithm, which
also applies a wavelet transform of the input signal, was inde-
pendently proposed in [4]. However, the input signal decom-
position as well as the step-size normalization strategy em-
ployed in our method are different from those of [4], as will
be explained in this paper. The convergence improvement
obtained with the proposed method for modeling sparse sys-
tems with colored input signals is verified through computer
simulations for the identification of the channel impulse re-
sponses in the digital network echo cancellation application.

2. ADAPTIVE STRUCTURE WITH WAVELET AND
SPARSE FILTERS

The algorithm proposed in this paper employs an adaptive
structure composed of a wavelet transform and sparse adap-
tive filters [5]. Such a structure is illustrated in Fig. 1, where
x(n) is the input signal, d(n) is the desired signal, and e(n) is
the error signal used in the adaptation algorithm. The wavelet
transform is represented by the equivalent non-uniform filter
bank with analysis filters Hy(z), and G(z™*) are the sparse
adaptive subfilters.

The development of the proposed adaptation algorithm



will be carried out for octave-band wavelet decomposition,
which are frequently employed in the analysis of sound sig-
nals. This choice was made due to the lowpass characteristics
of the signals commonly encountered in the applications of
echo cancellation and channel equalization. However, the re-
sults can be easily extended to other types of wavelet decom-
positions (wavelet packets). For an octave-band wavelet, the
equivalent analysis filters of the M-channel filter bank are [6]
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where H%(z) and H'(z) are the lowpass and high-pass filters,
respectively, associated with the wavelet functions [6]. The
orders of the analysis filters are given by
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where Nyo and Ny are the orders of H%(z) and H!(z), re-
spectively. The sparsity factors are

LO:2M71

and the delays A; in Fig. 1, introduced for the purpose of
matching the delays of the different length analysis filters,
are given by

Ly=2M"F k=1, M—1, 3)

Ay = Ny, — Np, . 4)

This structure results in an additional system delay (com-
pared to a direct-form FIR structure) equal to

Ap = Ny, (5)

It has been shown in [5] that the wavelet structure of Fig.
1 can exactly model any FIR system. For the modeling of a
length N FIR system, the number of adaptive coefficients of
the subfilters Gy (z) (non-zero coefficients of Gy (z'*)) should

be at least
Ns + NF,
N = {MJ +1 ©)
Ly

where Np, are the orders of the corresponding synthesis fil-
ters which, when associated to the analysis filters H(z), yield
perfect reconstruction.

3. WAVELET-BASED PNLMS ALGORITHM

For an adaptive filter with coefficients w;(n), for 1 <i <N —
1, the proportionate normalized least mean-square (PNLMS)
algorithm is given in Table 1. The PNLMS algorithm em-
ploys a different step-size for each coefficient such that larger
adjustments are applied to the larger coefficients (or active

Table 1: PNLMS Algorithm
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coefficients), resulting in faster convergence rate when mod-
eling systems with sparse impulse responses [1]. In Table 1,
the parameter 3 is a fixed step-size factor, d is a small con-
stant needed in order to avoid division by zero, and & pand p
are small positive constants which are important when all the
coefficients are zero (such as in the beginning of the adapta-
tion process) or when a coefficient is much smaller than the
largest one. Typical values of these constants are §, = 0.01
and p = 0.01.

Although the PNLMS algorithm presents better con-
vergence than the NLMS algorithm for sparse impulse re-
sponses, its performance is degraded when the excitation
signal is colored. In order to improve the adaptation speed
of the PNLMS algorithm for colored input signals, we em-
ploy the adaptive wavelet structure of Fig. 1 to derive the
wavelet-based proportionate normalized least mean square
(WPNLMS) algorithm presented in Table 2. In this table,
x¢(n) is the input signal at k-th subband (x(n) filtered by
Hi(z)) and wy; is the i-th coefficient of G(z). The step-size
normalization of the coefficients of a given subfilter is per-
formed separately from the other subfilters coefficients, tak-
ing into account the coefficients values and the input signal
power of that subfilter. For colored input signals, the pro-
posed algorithm presents faster convergence than the NLMS
and PNLMS algorithms, since its step-size normalization
strategy takes into account the input power at the different
frequency bands.

A feasible choice for the function F(-) in Table 2 is
F(x) = x for the PNLMS algorithm, F(x) = In(1+ px) for the
u-law PNLMS algorithm (MPNLMS) [3], or F(x) = 600x
if x < 0.005 and F(x) = 3 if x > 0.005 for the segmented
PNLS (SPNLMS) algorithm [3]. The MPNLMS algorithm
has been derived in order to achieve faster overall conver-
gence through the use of specially chosen step-size control
factors, while the SPNLMS algorithm is a simplified version
of the MPNLMS algorithm where the logarithm function is
approximated by linear segments.



Table 2: Generalized Wavelet-based PNLMS Algorithm
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The identification of systems with sparse impulse re-
sponses, corresponding to the digital network channels of [7],
using an adaptive filter with 512 coefficients was considered.
The input signal was generated by passing a white gaussian
noise with zero-mean and unit variance through the filter with
transfer function
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which results in a signal with power spectrum similar to
speech signal [8]. White noise with variance 62 = 10~® was
added to the desired signal. In all simulations, the parameters

were set to p = 0.01, §, = 0.01, 6 = 0.01, while 3 was se-
lected (empirically) in order to obtain the fastest convergence

Yming(n+1) = pmax{8, F ([wo(n)]), - +,F (jwy,—1(n)])} for each algorithm.
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End

It should be observed that the proposed step-size normal-
ization strategy takes into account the value of each coef-
ficient when compared to the values of the corresponding
subfilter coefficients (and not of all coefficients, as is done
in [4]). In the next section it will be seen that the proposed
step-size normalization method results in improved conver-
gence when compared to that of [4]. Another difference
between the proposed algorithm and the transform-domain
wavelet algorithm of [4] is in the application of the wavelet
transform to the input signal. In [4], the input vector x(n)
is transformed to x7(n) = Tx(n), with T formed according
to the selected wavelet functions. Efficient implementations
of such vector transformation are not straightforward. In the
method proposed here, however, a tree-structure analysis fil-
ter bank can be used to decompose the input signal, requiring
(M — 1)(Npo + N1 ) multiplications. For example, for a two-
level decomposition (M = 3) and daubechies 2 (Db2) wavelet
functions (Nyo = N1 = 4), 16 multiplications (per each new
input sample) would be required for the input signal decom-
position. One good thing when using [4] is that it does not
introduce delay.

4. EXPERIMENTAL RESULTS

Computer simulations are presented to illustrate the conver-
gence behavior of the WPNLMS algorithm investigated in
this paper for different wavelets, and to compare the results
with the ones produced by the NLMS and PNLMS algo-
rithms.

Figure 2 presents the experimental MSE evolution of
the WPNLMS algorithm (with F(x) = x) for the wavelet
Biorthogonal 4.4 having 1, 2 and 3 levels of decomposi-
tion (which correspond to M = 2, 3 and 4 subbands, respec-
tively), with the channel model gm7 from [7]. Also shown
in Fig. 2 are the MSE evolutions of the NLMS and PNLMS
algorithms. As can be observed, the WPNLMS algorithm
has a much better performance than the NLMS and PNLMS
ones. The use of M = 3 subbands is sufficient, in practice,
to decorrelate the colored input signal applied in this experi-
ment. The small degradation in convergence speed verified in
the simulation results when introducing one more decompo-
sition level (M = 4 subbands) was caused by the increase in
the total number of adaptive coefficients in relation to M = 2
and M = 3 subbands. Such an increase in the number of coef-
ficients is negligible in the case of modeling very large order
systems.
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Figure 2: MSE evolution for the WPNLMS algorithm for
Biorthogonal 4.4 wavelet with 1, 2 and 3 levels of decompo-
sitions, and for the NLMS and PNLMS algorithms.

The performance of the proposed WPNLMS algorithm
is now examined for two-level decomposition (M = 3 sub-
bands) using the following wavelet functions: Daubechies
1 (Dbl), Daubechies 4 (Db4), Biorthogonal 2.4 (Bior2.4),
Biorthogonal 4.4 (Bior4.4) and Coiflet 4 (Coif4). With such



wavelets, the increase in the complexity (compared to the
PNLMS algorithm) and the delay introduced by the decom-
position are not very large. Figure 3 shows the experimental
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Figure 3: MSE evolution for the WPNLMS algorithm with
different wavelet functions (M = 3), and for the NLMS and
PNLMS algorithms.

MSE evolution of the WPNLMS algorithm for the different
wavelets as well as of the NLMS and PNLMS algorithms.
The plots show that Bior4.4, Coif4 and Db4 presented very
similar performances, while Dbl produced the slowest con-
vergence rate. Such results were already expected, since the
Dbl wavelet has less selective frequency characteristics than
the other wavelets.

Figure 4 displays the MSE evolution for the NLMS,
PNLMS and WPNLMS (with two-level decomposition and
Bior4.4) when the impulse response is abruptly changed
from gml to gm7 (given in [7]). It can be observed that
the proposed algorithm is able to track the impulse response
change much faster than the NLMS and PNLMS algorithms.

We now compare the performance of the proposed algo-
rithm with that of [4]. Figure 5 shows the MSE evolution
of the wavelet-based PNLMS and SPNLMS algorithms with
sparse filters (SF) proposed in this paper and the transform-
domain (TD) approach presented in [4] for the channel model
gm3 from [7]. In these simulations we have employed the
2-level Haar wavelet transform in the proposed method (in
order to keep the computational and memory requirements
low) and the 9-level Haar wavelet transform in the transform-
domain method (as used in the simulations presented in [4]).
From this figure we observe that the proposed method with
the very simple Haar (or Dbl) wavelet transform results in
a significant improvement in the convergence rate of the
PNLMS and SPNLMS algorithms. It can also be observed
that the step-size normalization strategy adopted in the pro-
posed method is advantageous when compared to that of [4],
resulting in faster convergence.

Figure 6 presents the learning curves for the SF and
TD WSPNLMS algorithms with Haar (Db1l), Db2 and Db4
wavelet transforms, obtained with the channel model gm4.
It can be seen that for the colored input signal employed
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Figure 4: MSE evolution for the NLMS, PNLMS and
WPNLMS algorithms for an abrupt change in the channel
coefficients.

in the simulations, significantly faster convergence was ob-
tained with the more selective Db2 wavelet (when compared
to the use of Haar wavelet), while similar convergence rates
were obtained with Db2 and Db4 wavelets.
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Figure 5: MSE evolution of the sparse filters (SF) and
transform-domain (TD) WPNLMS and WSPNLMS algo-
rithms with Haar wavelet.

5. CONCLUSIONS

In this paper we presented a novel proportionate adaptive al-
gorithm that employs the wavelet transform and sparse sub-
filters. The step-size normalization takes into account the
value of each subfilter coefficient as well as the input sig-
nal power in the corresponding frequency band. Simulations
showed that the proposed method presents significantly faster
convergence rate than do the NLMS and several recently pro-
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Figure 6: MSE evolution of the SF and TD WSPNLMS al-
gorithms with different wavelet functions.

posed PNLMS-type algorithms, for applications in which the
system has sparse impulse responses and is excited with col-
ored input signal, such as in network echo cancellation struc-
tures.
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