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ABSTRACT

In this paper a multi-microphone speech dereverberation al-
gorithm is presented. The developed algorithm is based on
the LIME algorithm proposed by Delcroix et al. in [IEEE
Trans. Audio, Speech and Language Process., vol. 15,no.
2, pp. 430-440, Feb. 2007]. The LIME algorithm is shown
to be signal dependent and to either produce a very good or
a very poor estimate of the source signal. Two non-intrusive
methods are proposed to assess the performance of the LIME
algorithm for an unknown source signal. These methods can
be used to detect errors in the source signals’ estimation.
Least squares filters are calculated using signal segments that
are successfully recovered by LIME, and are used to derever-
berate other signal segments for which LIME produced poor
estimates. Experimental results demonstrate that the signal
segments for which LIME fails can successfully be detected
and dereverberated using the least squares filters.

1. INTRODUCTION

In general, acoustic signals captured by distant microphones
in a room suffer from distortions caused by reverberation.
The captured signals are the sum of direct signals (traveling
directly from the source to the microphones) and delayed sig-
nals (arriving at the microphones after being reflected by the
walls of the room). Reverberation degrades the fidelity and
intelligibility of speech and causes severe problems for ap-
plications such as automatic speech recognition, hearing aids
and hands free telephony [1]. The dereverberation problem
consists of recovering a source signal from observed rever-
berant signals. Although much effort has been devoted to
the dereverberation problem using both single- and multi-
microphone techniques, speech dereverberation remains a
challenging problem (see for example [2] and the reference
therein). Multi-microphone techniques appear particularly
interesting because theoretically perfect inverse filtering can
be achieved provided that the room acoustics are known [3].

When no a priori knowledge of the room acoustics is
available, the problem is referred to as blind dereverbera-
tion [4, 5]. An important blind dereverberation technique
is called blind deconvolution. In general, it is assumed that
the source signal is independent and identically distributed
(i.i.d.). However, this assumption does not hold for speech-
like signals. The speech generating process is deconvolved
when applying such deconvolution techniques to speech.
Consequently, the speech signal is excessively whitened.

One of the algorithms which address the whitening
problem is called LInear-predictive Multi-input Equalization
(LIME) [4, 5]. This algorithm uses multi-channel linear pre-
diction to calculate a set of prediction filers and a compen-
sation filter. Firstly, the filters are calculated from the cap-
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Figure 1: Acoustic system.

tured microphone signals. Secondly, the prediction residual
signal is estimated using the prediction filters. Finally, the
source signal is recovered by applying the compensation fil-
ter to the prediction residual signal. It should be noted that
the LIME algorithm requires a relatively large speech seg-
ment to estimate the required filters. The minimum segment
length depends on the length of the room impulse responses,
and the number of microphones. In [5] a segment of 2 sec-
onds was used for a reverberation time of 0.48 seconds. The
authors suggest [4] that the calculated filters might be used
to dereverberate future segments. Unfortunately, the slightest
change in the room might render these filters useless.

In this article we show that even when all of LIME’s pre-
liminary conditions hold, LIME does not always produce a
perfect reconstruction of the source signal. Moreover, for
certain signal segments LIME’s output might be much more
distorted than its reverberant input. We propose two methods
to identify those signal segments and a method to derever-
berate them using a set of filters that was calculated utilizing
segments for which LIME produced good results.

This paper is organized as follows. In Section 2 we for-
mulate the dereverberation problem. In Section 3 we intro-
duce the LIME algorithm and analyze its performance. In
Section 4 we develop two methods to detect those segments
for which LIME does not perform well. In addition, we pro-
pose a method which allows us to dereverberate these seg-
ments in an alternative way. Experimental results are pre-
sented and discussed in Section 5. Finally, Section 6 contains
our conclusions.

2. PROBLEM FORMULATION

We consider an acoustic system with one source and P mi-
crophones as shown in Fig. 1. The room impulse response
between the source and the i-th microphone is called hi(n)
where h1(n) is chosen to be the response of a unit impulse to
the microphone closest to the source. The signal received by



the i-th microphone ui(n) can be modeled by the input signal
convolved with hi(n), i ∈ {1, . . . ,P}, i.e.,

ui(n) = hi(n)∗ s(n)

=
M−1

∑
k=0

hi(k)s(n− k), (1)

where M is the number of taps of the room impulse response.
The blind dereverberation problem consists in recovering

the source signal s(n) from the P observed microphone sig-
nals ui(n) i ∈ {1, . . . ,P}.

3. LINEAR-PREDICTIVE MULTI-INPUT
EQUALIZATION

Firstly, the required assumptions for the LIME algorithm are
provided. Secondly, the LIME algorithm proposed in [4, 5]
is summarized. Finally, we discuss a number of limitations
of the LIME algorithm.

3.1 Hypotheses

The LIME algorithm assumes the following hypotheses [4,
5]:

1. The room transfer functions (RTF) are modeled using
time invariant polynomials and assumed to share no com-
mon zeros. The RTFs are defined as

Hi(z) =
M−1

∑
k=0

hi(k)z
−k i ∈ {1, . . . ,P}.

Using matrix formulation (1) can be rewritten as:

ui(n) = HT
i s(n)

where ui(n) = [ui(n), . . . ,ui(n−L + 1)]T , Hi is a (M +
L−1)×L convolution matrix expressed as

Hi =




hi(0) 0 . . . 0

hi(1) hi(0)
. . .

...
...

. . .

hi(M−1)
0 hi(M−1) hi(0)
...

. . .
...

0 . . . 0 hi(M−1)




,

and s(n) = [s(n), . . . ,s(n−N + 1)]T .
The length of the signal vector ui(n) is denoted by L, and
its minimum length is derived from the condition

L ≥
M−1

P−1
.

2. The input signal s(n) is assumed to be generated from a
finite AR process applied to a white noise e(n). The Z-
transform of the AR process is 1/a(z), where a(z) is the
AR polynomial

a(z) = 1−{a1z−1 + ...+ aNz−N},

where N denotes the length of the AR polynomial. Here
the long-term AR process of the speech is modeled by

1/a(z), rather than the short-term AR process. The
length of N is given by

N = M + L−1.

Using matrix formulation, one can write

s(n) = CT s(n−1)+e(n),

where C is the N ×N companion matrix defined as:

C =




a1 1 0 . . . 0
a2 0 1 . . . 0
...

...
. . .

. . .
...

...
...

. . . 1
aN 0 . . . . . . 0




and e(n) = [e(n),0, . . . ,0]T .

3.2 Algorithm

The LIME algorithm consists of the following steps:

1. Both the prediction filter w and the AR polynomial a(z)
are estimated from a matrix Q which is defined as [4, 5]

Q =
(
E{u(n−1)uT(n−1)}

)†
E{u(n−1)uT (n)}.

where u(n) = [uT
1 (n), . . . ,uT

P(n)]T , A† is the Moore-
Penrose generalized inverse of matrix A, and E{·} de-
notes the time averaging operator. Here, the covariance
matrix is estimated using

E{x(n)yT (n)} =
1

Ns

Ns−1

∑
n=0

(x(n)−mx) (y(n)−my)T ,

where Ns denotes the length of the reverberant sig-
nal segment, x(n) = [x(n), . . . ,x(n − L + 1)]T , y(n) =
[y(n), . . . ,y(n−L+1)]T , and mx, my are their mean vec-
tors respectively. The mean vectors are calculated using

mx =
1

Ns

Ns−1

∑
n=0

x(n) and my =
1

Ns

Ns−1

∑
n=0

y(n).

The first column of Q gives the prediction filter w, and
an estimate of the AR polynomial a(z) is obtained from
the characteristic polynomial of Q.

2. The prediction residual is defined as [4, 5]

ê(n) = u1(n)−uT (n−1)w.

The residual signal is free from the effect of room rever-
beration but is also excessively whitened. Filtering the
prediction residual with 1/â(z) produces the recovered
input signal multiplied by a factor of h1(0).

3.3 Limitations

The computation of large covariance matrices causes LIME
to be a computationally exhaustive algorithm. This prob-
lem might have been eased by the fact that in theory, if all
LIME’s preliminary assumptions hold, it should perform per-
fect dereverberation. In practice, even when all these hypoth-
esizes are valid, LIME may not perform well, and produce



signals whose audible quality is worse than that of the rever-
berant input signals. Experimental results demonstrate that
the algorithm’s performance is signal dependent, i.e., apply-
ing the algorithm to different segments of the same speech
signal produces different performance levels.

An example illustrating the signal dependent perfor-
mance of LIME is depicted in Fig. 2. This figure shows
the result of an experiment in which LIME has been ap-
plied to different segments of a reverberant speech signal
captured by two microphones in a room. The room dimen-
sions were 5.04 m×6.35 m×4 m (length×width×height) the
source location was (2.3 m, 1.7 m, 1.95 m) and the two mi-
crophone locations were (2.5 m, 3.15 m, 2.08 m) and (2.1 m,
3.25 m, 2.1 m). The room impulse responses were 800 taps
long, and were calculated using the image method [6]. The
male speech signal was 40960 samples long and its sam-
pling rate was 16 kHz. Each segment for dereverberation
was 14000 samples long, and the overlap between the seg-
ments was 14000-256 samples. LIME’s performance was
assessed using the log spectral distortion (LSD) [7] and seg-
mental SNR (segSNR) [7] measures. Fig. 2(a) and (b) show
that in most segments the segSNR is high and the LSD be-
tween LIME’s estimate and the source signal is much lower
than the LSD between the reverberant signal and the source
signal. This indicates that LIME removes most of the rever-
beration effects in those segments. On the other hand in other
segments the segSNR is low and the LSD between LIME’s
estimate and the source signal is much higher than that be-
tween the reverberant signal and the source signal. This indi-
cates that LIME produces an estimate which is very different
from the source signal in these segments.

In practice, the LSD and segSNR measures cannot be
used to assess LIME’s performance since the input signal
is unknown. Thus a different method is required to assess
whether LIME produces good estimates of the source signal.

4. PROPOSED SOLUTION

In this section we propose two non-intrusive methods to as-
sess the performance of the LIME algorithm. In addition, we
propose to construct a set of filters that can be applied to the
received signals or to those signal segments for which LIME
fails to dereverberate the received signal.

4.1 Performance assessment

One way to assess the performance of the algorithm’s output
is to look at its energy. In general, when comparing two sig-
nal segments, the segment with less energy contains less re-
verberation. Thus, if the energy of LIME’s estimate is lower
than the reverberant signal’s energy, there is high probability
that LIME’s output is less reverberant than its input signal.
Fig. 2(c) shows that the energy of the estimated signal is in-
deed higher than that of the reverberant signal in segments
where LIME did not perform well.

Another non-intrusive method to asses the performance is
obtained by analyzing the cause of the problem. Recall that
LIME estimates the long-term AR process. This estimate is
used to construct the compensation filter 1/a(z), which is ap-
plied to the prediction residual signal ê(n). When analyzing
the number of unstable poles of 1/a(z), i.e., the number of
zeros of a(z) for which the amplitude is larger than 1, it was
found that LIME does not perform well in case the number
of unstable poles is larger than zero. In Fig. 2(d) the num-
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Figure 2: (a) LSD between the reverberant and source signal
(solid) and between LIME’s estimates and the source sig-
nal (dotted), (b) segSNR of the reverberant signal segments
(solid) and segSNR of LIME’s estimates (dotted) (c) energy
of the reverberant (solid) and the estimated (dotted) segments
(d) number of unstable poles of each segment’s estimated AR
process.

ber of unstable poles of 1/a(z) is shown for each segment.
While all the AR processes calculated in segments where
LIME didn’t perform well contain unstable poles, the num-
ber of unstable poles is zero or small when LIME did perform
well. Therefore, by discarding LIME’s results in segments
where the AR polynomials have zeros outside the unit circle
we avoid using bad estimates of LIME at the cost of loos-
ing a small number of estimates from segments where LIME
performance was satisfactory despite the unstable poles.

In the sequel we use both methods to assess the perfor-
mance of LIME. We will now propose a method to derever-
berate signals for which LIME failed to produce good esti-
mate of the source signal.

4.2 Dereverberation using least squares filters

When LIME produces a poor estimate of the source signal or
a certain part of it, a different approach is required in order
to perform dereverberation.

Here we assume that we have at least one segment of
the same reverberant speech signal which LIME successfully
dereverberated. Using this segment, a set of filters is calcu-
lated which minimizes the least squares (LS) error between
LIME’s estimate and the filtered microphone signals. These
LS filters are then used in segments where LIME failed to
dereverberate the received microphone signals.

Alternatively, the LS filters can be computed adaptively.
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Figure 3: Proposed system to estimate the least squares fil-
ters.

In this case the filters can be updated when LIME is able to
correctly estimate the source signal. The use of an adaptive
estimation technique is beyond the scope of this paper.

The system used to estimate the LS filters is shown in

Fig. 3. Let us define the LS filters of length L̃ as gi(n) i ∈

{1, . . . ,P}. To some extent the length of the LS filters L̃ can
be used to control the amount of reverberation that is re-
duced. Then we define the error between LIME’s estimate
ŝ(n) and the filtered microphone signals as

ey(n) =
P

∑
i=1

uT
i (n)gi − ŝ(n).

In matrix form we get

ey(n) = U(n) g− ŝ(n),

where ey(n) = [ey(n), ...,ey(n + Ñs)]
T with Ñs = Ns − M,

gi = [gi(0), . . . ,gi(L̃ − 1)]T , g = [gT
1 , . . . ,gT

P ]T , ŝ(n) =

[ŝ(n), ..., ŝ(n+Ñs)]
T , Ui(n) is a (Ñs +1)× L̃ matrix expressed

as

Ui(n) =



ui(n) 0 . . . 0

ui(n + 1) ui(n)
. . .

...
...

...
. . . 0

ui(n + L̃−1) ui(n + L̃−2)
. . . ui(n)

...
...

. . .
...

ui(n + Ñs) ui(n + Ñs −1) . . . ui(n + Ñs + L̃−1)




,

and U(n) = [U1(n), . . . ,UP(n)].
Minimizing the square error |ey(n)|2 gives us

ĝ = argmin
g

(U(n) g− ŝ(n))2

= (UT (n)U(n))−1UT (n)̂s(n).

Applying these filters to the microphone signals produces
an estimate of the source signal

y(n) =
P

∑
i=1

ũT
i (n)gi,

where ũi(n) = [ui(n), . . . ,u(n− L̃+ 1)]T .
Using one or both detection methods introduced in the

previous subsection, segments where LIME did not perform
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Figure 4: (a) LSD between the reverberant and source signal
(solid), between the LS filters output and the source signal
(dashed) and between the combined method’s output and the
source signal (dotted), (b) segSNR of the reverberant signal
segments, segSNR of estimated segments obtained using the
LS filters (dashed) and segSNR of the segments obtained us-
ing LIME and LS filters (dotted).

well can be identified, and dereverberated using the LS fil-
ters.

It should be noted that two estimates are acquired for
each signal segment, viz., the first estimate is produced by
LIME and the second estimate is produced by the LS filters.
Here, two options are considered to combine the estimates.
The first option is to use LIME’s output in case the estimate
obtained by LIME is assumed to be accurate, and to use the
LS filters’ output in case the estimate obtained by LIME is
assumed to be inaccurate. In case the LS filters produce an
accurate estimate of the source signal the concatenated signal
segments sound well. However, in case the LS filters’ output
contains some reverberation, which could happen with long
reverberation times, there might be a (subjectively disturb-
ing) discontinuity between the signal segments. The second
option is to continuously use the output of the LS filters to
acquire a more continuous, but possibly more reverberant es-
timate of the source signal. Results of an informal listening
test indicated that a continuous reduction level results in a
higher subjective preference.

5. EXPERIMENTAL RESULTS

In order to assess the performance of the proposed algorithm
we performed several experiments. The setup is described in

Section 3.3. The length of the LS filters L̃ was chosen to be

L̃ = M−1
P−1

+ 10.

In the first experiment we chose the 81-st segment
(shown in Fig. 2) as the signal to dereverberate and termed it
segment II. The LSD of LIME in segment II was worse than
the performance in any other segment. Firstly, we applied
LIME to the part of the signal which precedes segment II,
which we termed segment I. Both performance assessment
methods indicated that LIME performed well. Therefore,
we were able to use LIME’s output to calculate the LS fil-
ters. Secondly, we employed the LS filters to dereverberate
segment II. The LSD between the source signal and the re-
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(a) Reverberant signal u1(n).
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(b) Processed signal y(n).

Figure 5: Spectrogram and waveform of the reverberant sig-
nal u1(n) and the output signal y(n) of the LS filters.

verberant signal was 4.52 dB and the segSNR was -0.15 dB.
The LSD between the estimated signal and the source sig-
nal achieved by LIME was 11.13 dB and the segSNR was
-0.58 dB. The LSD between the output of the LS filters and
the source signal was 0.004 dB and the segSNR was 35 dB,
showing great improvement compared to LIME.

In the second experiment we applied the two proposed
methods to all the speech signal’s segments. While the first
method uses the output of the LS filters continuously, the
second method only uses the output of the LS filters in case
LIME is assumed to produce a poor estimate of the source
signal. Applying LIME to the first segment produced an es-
timate which was approved by both performance assessment
methods. Therefore, LIME’s estimate was used to calculate
the LS filters used in every segment that was badly recovered
by LIME according to either of the performance assessment
methods. It is shown in Fig. 4 that the LSDs between the out-
put of the proposed methods and the source signal is always
lower than the LSD between the reverberant signal and the
source signal. In addition, the segSNRs of processed signals
is always higher than the segSNR of the reverberant signal.
It can be seen that once the LS filters are calculated using an
accurate estimate of the source signal the LS filters provide a
more stable solution compared to LIME. In Fig. 5 the spec-
trogram and waveform of the output signal of the LS filters
and the reverberant signal are shown. It can be seen that the
smearing of the signal along the frequency and time axes that
result from the reverberation is significantly reduced.

In the third experiment we applied the LS filters calcu-

lated in the previous experiment for a male speech signal to
a female speech signal reverberating in the same room con-
ditions. The LSD between the original signal and the rever-
berant signal was 4.11 dB and the segSNR was -0.71 dB.
The LSD between the output of the LS filters and the origi-
nal signal was 0.01 dB and the segSNR was 34.09 dB which
indicates a significant reverberation reduction. This result
indicates that when the spectral content of LIME’s estimate
is diverse enough the LS filters calculated from one speech
signal can be used to dereverberate another signal that is ob-
served under the same room conditions.

6. CONCLUSIONS

In this paper we presented a multi-microphone speech dere-
verberation algorithm based on the LIME algorithm and LS
filtering. It was shown that the performance of LIME is
signal dependent. We proposed two non-intrusive methods
to evaluate the performance of LIME. Firstly, the energy of
the output signal can be compared to the energy of the in-
put signal. Secondly, the roots of the AR process estimated
by LIME can be used to assess LIME’s performance. Signal
segments successfully dereveberated by LIME were used to
calculate LS filters. The LS filters were used to dereverber-
ate other signal segments for which LIME failed to recover
the source signal. Experimental results show that the sig-
nal segments for which LIME produces poor estimates of the
source signal can be detected successfully. In addition, the
LS filters calculated from one signal segment were shown to
reduce reverberation in different signals under the same room
conditions.
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