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ABSTRACT
In this contribution, the design of approximately linear-
phase, low delay and quasi-equiripple FIR lowpass filters is
resumed with particular emphasis on very low group delay.
To this end, a novel unconstrained single-objective multi-
criterion design algorithm is proposed. Results show that the
mean group delay can be diminished down to roughly 20% of
that of a corresponding linear-phase FIR filter. Moreover, the
application of the proposed algorithm to the design of power
complementary (square-root Nyquist) filters is demonstrated.

1. INTRODUCTION

Digital linear-phase (LP) FIR filters have been widely used
in all fields of digital signal processing due to their robust
stability, simplicity of implementation, and the absence of
phase distortions. For some specific applications, however,
the (normalised) group delay τg = (N −1)/2 of standard LP
FIR filters, where N represents the filter length, is unaccept-
ably high. Very low group delay is a challenge, for instance,
in case of signal processing in digitally implemented hearing
aids, where the difference between the direct and the pro-
cessed sound signals must not exceed a critical value [1].
Moreover, long delay is prohibitive, for instance, in two-way
communication systems for intelligibility, and in feedback
control systems for stability reasons.

A first idea of approaching the design of highly selective
LD digital filters is to use standard recursive or non-recursive
minimum-phase filters, respectively. However, the passband
group delay distortion of these filter classes is frequently un-
acceptable – and group delay equalisation additionally coun-
teracts to our design goal of very low group delay. Moreover,
it is suspected that recursive minimum-phase filters (espe-
cially narrow-band ones) possess a prohibitively high min-
imum group delay being caused by the positive group de-
lay contributions of the non-zero singularities of IIR filters
within the z-plane unit circle [2]. Hence, in this investigation,
the design of selective digital filters with very low group de-
lay is focused on modified minimum-phase FIR filters, where
the poles of the above IIR filters are replaced with zeros re-
ducing, in contrast to the IIR counterpart, the passband group
delay. Part of this group delay advantage is, however, lost
again, since FIR filter orders are known to generally exceed
those of corresponding IIR filters [2].

In the past, many attempts to the design of FIR lowpass
filters have been made to approximate a desired magnitude
response in conjunction with a linear or non-linear phase or,
alternatively, with an approximately constant passband group
delay response [3, 4, 5, 6]. In [7], a procedure for the de-
sign of FIR Nyquist filters with low group delay was pro-
posed that is based on the Remez exchange algorithm. With
these approaches a filter group delay can always be obtained

that ranges below the group delay of a corresponding LP FIR
filter. However, the minimisation of the minimum or mean
value of the passband group delay was of no concern. In con-
trast, for instance, Lang [8] has shown that his algorithms for
the constrained design of digital filters with arbitrary magni-
tude and phase responses have the potential to achieve a con-
siderable reduction of group delay as compared to LP FIR
filters, even for high order FIR filters.

The goal of this contribution is to present an alternative
unconstrained approach to the design of highly selective FIR
filters with very low and approximately constant group de-
lay, and quasi-equiripple magnitude response. To this end, a
novel multi-criterion objective function is proposed for op-
timisation allowing for individual weighting of the involved
error functions. This multi-criterion objective function con-
siders the deviation of the filter magnitude responses in pass-
band and stopband and, in passband only, both the deviations
of phase from linearity and of group delay from zero.

Subsequently, the multi-criterion objective function is in-
troduced and discussed in section II. In section III, three illus-
trative design examples are presented and discussed, while in
section IV some conclusions are drawn.

2. OPTIMISATION APPROACH

The design of FIR lowpass filters with approximately linear
phase and very low group delay is first formulated as a multi-
objective unconstrained optimisation problem. In practice,
however, this problem is solved by combining all multiple
objectives into one scalar objective function and applying
standard unconstrained optimisation techniques. The inde-
pendent parameters of the objective functions are the FIR fil-
ter coefficients.

2.1 Multi-Objective Formulation

The frequency response of a real-valued digital FIR filter of
length N is characterized by the scalar product [2]:

H(ejΩ) =
N−1

∑
n=0

hne−jnΩ = h
T
c, (1)

where the N-dimensional coefficient vector

h
T = [h0, h1, · · · , hN−1] (2)

comprises the FIR filter parameters to be optimised, and vec-
tor c contains the corresponding exponential terms of (1).

For the design of a lowpass filter we define the desired
filter magnitude response:

M(ejΩ) =

{

1, 0 ≤ Ω ≤ Ωp

0, Ωs ≤ Ω ≤ π ,
(3)
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where Ωp and Ωs represent the filter passband and stopband
cut-off frequencies. Using (3), we set up two related error
functions on a dense frequency grid to control the disjoint
Lr-norms of the filter magnitude responses in passband and
stopband during optimisation by using FFT techniques:

ep(h) =

[

Kp

∑
k=0

(∣

∣

∣
H

(

ejΩk

)∣

∣

∣
−M

(

ejΩk

))r

]1/r

, (4)

es(h) =

[

K/2

∑
k=Ks

(∣

∣

∣
H

(

ejΩk

)∣

∣

∣
−M

(

ejΩk

))r

]1/r

. (5)

Hence, the frequency grid is defined equidistantly according
to Ωk = 2πk/K, k = 0,1, . . . ,K − 1, with K even. More-
over, index p refers to passband, where ΩKp ≈ Ωp, and in-
dex s denotes stopband with ΩKs ≈ Ωs. The exponent r, re-
stricted to an even integer number, is set to r = 2 for least
squares (L2) optimisation, whilst r = 20 is chosen for quasi-
equiripple (L20 ≈ L∞) magnitude design [9].

Using the group delay frequency response of H(ejΩ) as
given by [2]:

τg(e
jΩ,h) =

−∂ arg(ejΩ,h)

∂Ω
= Re

{

h
T
Dc

hTc

}

, (6)

where Re{.} denotes the real part of a complex-valued quan-
tity, and D = diag[0, 1, · · · , N − 1] represents an N ×N di-
agonal matrix, a third objective function to be used for the
minimisation of the maximum absolute value (L∞-norm) of
the passband group delay is readily formulated:

eτ(h) = max
0≤Ωk≤Ωp

∣

∣

∣
τg(e

jΩk ,h)
∣

∣

∣
=

∥

∥

∥
τg(e

jΩk ,h)
∥

∥

∥

∞
. (7)

Obviously, in (7), the underlying passband group delay de-
sired function is zero for all frequencies.

As an error function to control phase linearity during the
optimisation process, we use the Lr-norm of the deviation of
the phase curvature from zero. Hence, this fourth objective
function is based on the first derivate of the group delay w.r.t.
the normalised frequency Ω as follows:

eφ (h) =

[

Kp

∑
k=0

∣

∣

∣

∣

∂τg(e
jΩ,h)

∂Ω

∣

∣

∣

∣

r

|Ω=Ωk

]1/r

∼
[

Kp

∑
k=1

∣

∣

∣
τg

(

ejΩk

)

− τg

(

ejΩk−1

)∣

∣

∣

r

]1/r

, (8)

where the frequency-continuous definition of eφ (h) is ap-
proximated on the dense grid, as defined in (8). It should
be noted that the grid density can be adapted to any value,
as required. The (minimum) density we use throughout all
designs is represented by K = 1024.

Finally, to extend the range of applications of our op-
timisation approach, we introduce a fifth error function for
the specific design of power complementary (square-root
Nyquist) FIR filters potentially with low group delay, being
used for data transmission and in standard quadrature mirror
filter banks. To this end, we control the L∞-norm of the fil-
ter magnitude response at the 3dB-point in the centre of the

transition band, Ωt = (Ωp + Ωs)/2, leading to:

et(h) =

∣

∣

∣

∣

|H(ejΩt)|− 1√
2

∣

∣

∣

∣

=

∥

∥

∥

∥

|H(ejΩt)|− 1√
2

∥

∥

∥

∥

∞

. (9)

Combining the five error functions (4), (5), (7) , (8) and (9)
to an objective vector function:

e(h) =
[

ep(h), es(h), eτ(h), eφ (h), et(h)
]T

, (10)

our design problem is readily formulated as an unconstrained
multi-objective least squares (L2) optimization problem [10]:

min
h∈RN

‖e(h)‖2
2 = min

h∈RN
|e(h)|2 = min

h∈RN
e

T(h)e(h). (11)

As a consequence of the non-linear nature of the objective
vector function e(h) in dependence of the coefficient vector
h to be optimised, the minimisation problem (11) is gener-
ally multi-modal and, hence, is expected to possess different
(possibly many) local minima. Nevertheless, each optimum
or sub-optimum solution of the minimisation process (11)
shall represent a balanced compromise between the finally
remaining error contributions of the five individual objective
functions of (10) to the squared Euclidean norm of e(h). The
improvement of an individual objective is always at the ex-
pense of some or all other errors of (10).

2.2 Single-Objective Formulation

The multi-objective L2/Lr/L∞-norm based formulation of
our optimisation problem given in section 2.1 is, in com-
pliance with common practice, transformed to a single-
objective form, which is generally better suitable for the ap-
plication of standard optimisation procedures. To this end,
the 5-dimensional error vector (10) is pre-multiplied by a 5-
dimensional weighting vector according to:

e(h) = w
T
e(h), (12)

where w
T = [α, β , γ, δ , η ], yielding the scalar objective

function:

e(h)= αep(h)+β es(h)+γeτ (h)+δeφ (h)+ηet(h). (13)

Obviously, the individual weights of vector w have to be
selected very carefully to obtain a balanced optimum result
of the minimisation procedure. Needless to say that this re-
quires a lot of procedural experience and sure instinct. More-
over, alternate specific selection of w allows for trading-off
individual objectives against others.

The scalar (single-objective) form (13) of the error func-
tion is amenable to differentiation w.r.t. the coefficients h

and, hence, to gradient-based optimisation techniques. As a
result, for the optimisation of the vector h of N unknown co-
efficients subject to the minimisation of (13), we have used
the gradient-based problem solver fminunc, which is offered
by the MATLAB Optimization Toolbox. Due to the multi-
modal nature of our non-linear optimisation problem, we are
bound to start each optimisation from a suitable initial set h.
Details on finding these initial estimates will be discussed in
conjunction with the presentation of the design examples in
the subsequent section.
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Table 1: Specification and performance of Ex. A versus ref.
Performance Design Ref.

Passband Ripple 0.5dB
Stopband Atten. 50dB

Filter Length N 25 20
Passband min. τg 5.9 9.5
Passband mean τg 6.0 9.5
Passband max. τg 6.1 9.5

3. DESIGN EXAMPLES

Subsequently, we present and investigate three different de-
sign results of an FIR lowpass filter of length N = 25 ob-
tained with the single-objective multi-criterion optimisation
procedure as described in section 2.2. The passband and
stopband cut-off frequencies are fixed to Ωp = 0.4π and
Ωs = 0.6π , respectively. To obtain quasi-equiripple magni-
tude and phase responses, the exponent r of (4), (5) and (8) is
set to r = 20. In addition, the impact of the weighting vector
w

T of (12) and (13) on the frequency responses is studied.
Each design is compared with a LP or minimum-phase (MP)
FIR reference filter with the same magnitude response.

3.1 Example A: Approximately Linear Phase

For Ex. A, the weights are chosen as follows: w
T =

[1, 15, 0.01, 3, 0]. As a result, we expect a high stopband
attenuation, forced by weight β = 15 of (5), and a highly
linear phase controlled by weight δ = 3 of (8).

The design results of Ex. A are presented in Tab. 1 and
depicted in Fig. 1, respectively, along with a LP FIR refer-
ence filter that meets the same magnitude specifications. De-
spite the fact that our design requires a higher filter length
(excess order of 5), its group delay ranges completely below

the constant value of τ ref
g = 9.5 of the LP reference filter. Es-

pecially in passband, the approximately constant group delay
amounts to roughly 60% of that of the reference filter only.

As to be seen from Figs. 1(a),(c), the zeros effectuating
the stopband of the transfer function H(z) of our design are
located slightly off (i.e. inside) the z-plane unit circle. Hence,
all zeros within the unit circle (there are no more group de-
lay neutral zeros on the periphery of the unit circle) con-
tribute to the overall group delay by at least a small negative
amount [2]. Obviously, to maintain the specified stopband
rejection, extra zeros inside but close to the unit circle are
needed, which explains the excess filter order of our design
compared to that of the reference filter.

Finally, it is somewhat unexpected that the mean group
delay of τmean

g = 6.0 of our design is that low despite the

very low weight of γ = 0.01 put on the group delay error
function (7). Hence, we suspect that this error function has
a high overall impact on the scalar objective function (13).
Furthermore, according to our experience gained from many
designs with the above fixed weight vector, it should be noted
that an increase of the filter length predominantly increases
the stopband attenuation of our design, whereas all other fil-
ter properties remain essentially unchanged.

3.2 Example B: Very Low Group Delay

For Ex. B, the weights are chosen as follows: w
T =

[1, 15, 0.01, 0, 0]. Here, we expect a lowpass filter with
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Figure 1: Design of Ex. A (solid) versus reference (dashed)

high stopband attenuation, forced by weight β = 15 of (5),
and very low group delay in the passband controlled by
weight γ = 0.01 of (7).

The design results are presented in Tab. 2 and Fig. 2, re-
spectively, along with the corresponding LP FIR reference
filter. The very small magnitude deviation in passband is
deemed the main reason for the excess filter length of the
LP reference by 9, although the stopband zeros of our design
are again located inside the z-plane unit circle; cf. Fig. 2(a).

Comparing group delay, we have obtained τmean
g = 0.14 ·τ ref

g ,

however, at the expense of the loss of phase linearity!

Finally we report that, like in this example, very low
group delay is only achievable in connection with very small
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Table 2: Specification and performance of Ex. B versus ref.
Performance Design Ref.

Passband Ripple 0.01dB
Stopband Atten. 52dB

Filter Length N 25 34
Passband min. τg 1.7 16.5
Passband mean τg 2.3 16.5
Passband max. τg 4.7 16.5
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Figure 2: Design of Ex. B (solid) versus reference (dashed)

magnitude ripple in passband, i.e. reduction of group delay
concurrently decreases passband magnitude deviation.

3.3 Example C: Square-Root Nyquist Filter

For Ex. C, the weights are chosen as follows: wT =
[1, 1, 0.1, 0, 1]. Hence, we expect a nearly power comple-
mentary FIR square-root Nyquist filter as a result of weight
η = 1 of (9) with low group delay controlled by weight
γ = 0.1 of (7). To support magnitude symmetry w.r.t. Ω = π ,
the same weights α = β = 1 are put on (4) and (5).

The design results are presented in Tab. 3 and Fig. 3, re-
spectively, along with a MP FIR reference filter that meets
the same magnitude specifications [11]. Power complemen-
tarity is assessed by the logarithmic distortion function [11]

adist(e
jΩ) = 20 · log10

K/2

∑
k=0

[

∣

∣

∣
H

(

ejΩk

)
∣

∣

∣

2

+
∣

∣

∣
H

(

ej(Ωk−π)
)
∣

∣

∣

2
]

,

as depicted in Fig. 3(c). The reasonably close similarity of
both designs of this example confirms that our approach also

Table 3: Specification and performance of Ex. C versus ref.
Performance Design Ref.

Passband Ripple 0.01dB
Stopband Atten. 43dB

Filter Length N 25 28
FB-Distortion max. 0.45dB 0.2dB
Passband min. τg 1.4 1.5
Passband mean τg 1.9 2.0
Passband max. τg 3.5 3.7

has the potential to design standard quadrature mirror fil-
ters (SQMF) with common quality. Moreover, our design
approach overcomes the restriction to even filter lengths in
contrast to the approach by Herrmann & Schüssler [11].

3.4 Numerical Properties of the Design Algorithm

Due to the non-linear nature of the single-objective error
function e(h), as defined by (12) and (13), the minimisa-
tion problem (11) is multi-modal and, hence, there may ex-
ist many local minima, where each (sub-)minimum obtained
highly depends on the choice of the initial coefficient vec-
tor h

0. To overcome this deficiency, we adopt a heuristic
approach: We perform each filter design M times, always
starting from a different, randomly selected initial coefficient
vector h

0
m, m = 1, . . . ,M, where only the best (sub-)optimum

solution is retained (M = 30 . . .60). In future, this multistart
procedure will be combined with more intelligent strategies
of genetic algorithms.

Experience with our design algorithm has shown that,
too, the choice of the weight vector w

T has a high impact on
the quality of the final optimum solution. On the one hand,
there are weight ratios that make the algorithm diverge since,
most probably, no (sub-)optimum solution exists for this very
weight vector. This is, for instance, the case, if the group de-
lay requirement is too tight by imposing a too high weight
on (7). On the other hand, minor changes of some individ-
ual weights may lead to completely different final solutions,
or even to divergence, respectively. All these issues call for
further detailed investigations in the future.

4. CONCLUSION

In this contribution, an effective and flexible approach to the
design of highly selective quasi-equiripple FIR filters with
very low group delay and/or approximately linear phase has
been proposed. This method is based on the solution of a
multi-objective unconstrained optimisation problem allow-
ing for individual weighting of the involved error functions.
To this end, three L20-norm and up to two L∞-norm error
functions are combined to a weighted least squares (L2) opti-
misation approach. The impact of both the individual objec-
tive functions and the associated weights have been investi-
gated. Furthermore, we have presented a method to solve the
multi-objective optimisation problem by using a MATLAB
routine, and provided three examples. Finally, we have dis-
cussed the properties of the design algorithm with reference
to the examples.

Future investigations will be devoted to the design of
narrow-band FIR lowpass filters with very low group delay,
and their application in uniform, complex-modulated low de-
lay filter banks. Furthermore, we will compare the poten-
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Figure 3: Design of Ex. C (solid) versus reference (dashed)

tial of our unconstrained design approach with that of con-
strained design algorithms such as those proposed in [8, 12]
and, possibly, transform our procedure into a constrained de-
sign problem. Finally, we will fathom the assertion of Lang
in [8] that IIR filters have the potential of the lowest group
delay, possibly ranging below that of FIR filters with very
low delay, as presented here.
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