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ABSTRACT

This paper proposes a no-reference PSNR estimation algorithm for
video sequences subject to H.264/AVC encoding. The proposed
method explores statistical properties of the transformed coeffi-
cients, which can be modeled by a Cauchy or Laplace probabil-
ity density function. The distribution’s parameters are computed
from quantized coefficient data received at the decoder, combining
maximum-likelihood with linear prediction estimates. Since the pro-
posed algorithm has no knowledge about the original sequences, it
can be used as a no-reference metric for evaluating the quality of
the encoded video sequences. When compared with recent state-
of-the-art algorithms proposed for the same purpose, it has shown
better PSNR estimation accuracy in a set of video sequences subject
to different encoding rates.

1. INTRODUCTION

Due to the increasing transmission of digital video contents over
broadband and wireless networks, quality monitoring of multime-
dia data is becoming an important matter. From a quality of expe-
rience perspective, it is desirable to evaluate content quality at the
receivers. Such a system would have to deal with different sources
of distortion, namely lossy encoding of media data and data trans-
mission errors. Moreover, and since the original signals are usually
not available at the receiver, quality scores should be provided with-
out the knowledge of the original signals - no-reference metrics - or
using very limited information about them, transmitted through a
side channel - reduced-reference metrics.

This paper proposes an algorithm that estimates errors due to
lossy compression in block-wise DCT (discrete cosine transform)
based video encoding schemes. Although the proposed method is
oriented to H.264/AVC [1] encoded streams, it can be easily adapted
to other DCT-based video encoding schemes.

It is assumed that statistics of the transformed coefficient data
can be modeled by a parametric distribution. The distribution pa-
rameters are estimated from the quantized coefficient values, which
are available at the receiver, combining the maximum-likelihood
(ML) parameter estimation method with a linear prediction scheme,
as suggested in [2] for still images and in [3] for MPEG-2 encoded
video (I frames only). The method proposed in this paper can be
seen as an extension of those methods to H.264. The main innova-
tions are the additional use of the Cauchy probability density func-
tion as a coefficient distribution model, and the ability to estimate
the PSNR in inter modes (P and B frames). The final result is a
PSNR estimate that is computed without the need of the original
data, thus resembling a no-reference quality metric.

The performance of the proposed algorithm has been evaluated
using different video sequences, subject to different encoding rates.
The resulting PSNR estimates have shown greater accuracy than the
ones provided by the state-of-the-art algorithms [4] and [5], which
have been proposed with the same objective.

The work presented in this paper is sponsored by FCT - financiamento
plurianual.

The paper is organized as follows: after the introduction, sec-
tion 2 gives a brief overview of the H.264 standard; section 3 shows
how to compute a no-reference PSNR estimate from the coeffi-
cient’s distribution; section 4 is focused on the estimation of the
coefficient’s distribution parameters from the quantized data; ex-
perimental results are depicted in section 5, and finally, remarks
and future directions are given in section 6.

2. BRIEF OVERVIEW OF THE H.264 STANDARD

2.1 Encoder and decoder schemes

A typical H.264 encoder is partially represented in figure 1(a). An
input frame Fj,, subject to encoding is divided in 16 x 16 block-
wise units called macroblocks (MBs). Each macroblock can be en-
coded in intra or inter mode. In intra mode, a prediction block
P is computed from samples taken from the current frame, that
have been previously encoded, decoded and reconstructed. In inter
mode, P is computed by motion-compensated prediction from ref-
erence frame(s) For. The difference between P and the original
MB pixel values —D— is transformed (using a block-wise trans-
form) and quantized, resulting in a set of quantized transform co-
efficients X, and the corresponding quantization indexes. These
indexes are then re-ordered and entropy encoded for transmission.

As for the H.264 decoder, partially represented in figure 1(b),
it receives a compressed bitstream, whose elements are entropy de-
coded and reordered in order to produce a set of quantized coeffi-
cient data X. The quantized coefficients are then rescaled and in-
verse transformed, resulting in a residual signal D/, which is added
to the current prediction signal, P. The decoded frame results from
the sum of P and D’ for all MBs.

2.2 Transform and quantization

The transform operation used in H.264 is an integer approximation
of the classical block-wise DCT (used in previous standards, such
as JPEG and MPEG-2). The main transform block size in H.264 is
4 x 4, although the use of 8 x 8 transform is also possible in higher
profiles. For simplicity, only the 4 x 4 size has been considered
in this paper. Let D represent the differences between the original
and the predicted image values in a 4 x 4 block. The transformed
coefficient values —x— can be computed as:

x=TDT'®S, (1)

where © represents point-by-point multiplication, T is the trans-
form matrix and S is a post-scaling matrix, which are defined as [6]:
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In commercial encoders, the transform operation is implemented
using integer arithmetic only (add and shift operations). As for the
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Figure 1: H.264 generic encoder and decoder schemes.

0 0.6250
1 0.6875
2 0.8125
3 0.8750
4 1.0000
5 1.1250

Table 1: Base quantization steps.

post-scaling operation, the reference software [7] implements it to-
gether with the quantization, using only integer operations.
The value of the quantized coefficient X is given by:

X = sign(xy) x “’;JH_OCJ X g, 2
k

ik

where ¢ is the quantization step, & is a parameter that controls
the width of the dead zone around 0 and i; represents the quantiza-
tion index that is actually transmitted. In the reference software [7],
o ~ 2/3 for intra blocks and & ~ 5/6 for inter blocks. The quanti-
zation step, gy, can be derived from a H.264 parameter called QP,
which may differ from macroblock to macroblock. The general rule
to compute g from QP is:

g = qp(mod(QP,6))212P/0), 3

where gp is a base quantization step (see table 1) and mod (m,n) is
the remainder of integer division of m by n.

3. PSNR ESTIMATION

Assuming pixel values in the range of [0...255], the image PSNR
is usually given by:

2552 ¥,

where M is the number of pixels, 8,% is the squared difference be-
tween the k-th reference and distorted pixels and MSE is the mean
square error. In accordance with Parceval’s theorem, it is indiffer-
ent to measure the PSNR in the pixel or in the DCT domain. Thus,
for the remainder of this paper, M will be the number of DCT co-
efficients under analysis and 8,% = (Xx — x¢)? will be the squared
difference between original, x;, and quantized, X}, coefficients.
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Figure 2: PSNR estimation scheme.

If the original coefficient data distribution is known, it is pos-
sible to estimate the local mean square error, f—:,?, at the k-th coeffi-
cient, by observing the value of its quantized value, X;:

& = /fx (x| Xg) (Xg —x)dx, &)

where fx (x|X)) represents the distribution of the original coeffi-
cients values conditioned to the observed value of X;. Using Bayes
rule and considering that P(X;|x) = 1 if x is in the quantization in-
terval around X, [ag;by], and P(Xy|x) = 0, otherwise, (5) can be
rewritten as:

_ fx _ 2 i (0) (X — x)2dx

2 fx (x)dx

where fx (x) is the original coefficient data distribution and the lim-
its a; and by, are defined as:

ar = —0og, .
lka :0;
{bk =0q,,

x)dx = (6)

(N
{ak:|Xk|7(17a)Qk lek#O

bk = |Xk|+aqk,

From (6), it can be concluded that the squared error estimate de-
pends on the value of the quantized coefficient X;, on the quanti-
zation step g (which determines a; and by) and on the coefficient
distribution fy(x). X; and g can be derived from the encoded bit-
stream, while fx (x) needs to be estimated from the available quan-
tized data.

A no-reference PSNR estimation method can then be imple-
mented using the scheme depicted in figure 2. The received coef-
ficient values and the corresponding quantization steps are used for



16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

estimating the parameter(s) of fx(x). Once fx(x) is derived, the
local squared error is estimated and therefore a no-reference PSNR
value can be computed. A memory block is also included, to gen-
eralize the scheme for situations where the error currently under
estimation is dependent on past estimates.

4. COEFFICIENT DISTRIBUTION MODELING

The most common models found in literature for the statistical dis-
tribution of H.264 coefficient data are Cauchy [8] and Laplace [5]
probability density functions. Both models rely in one parameter
that needs to be estimated. This section presents a methodology
to estimate the distribution’s parameter, using quantized coefficient
data, that as been derived for both models.

4.1 Cauchy model

The Cauchy probability density function (PDF) can be described
by:

1 B

S At ®

fx(x)

where f3 is the distribution’s parameter and x represents the coeffi-
cient’s value at a given frequency position. If the original coefficient
values were known, an estimate for parameter 8 could be computed
using the maximum-likelihood (ML) method [9]:

N

Bur = argmax {log [1rx (xk)}, ©9)
k=1

where the x; is the k-th coefficient value and N is the number of

coefficients. Using (8) in (9) leads to

N
Bur _argmBax{Z (logﬁ—log(ﬁ2 +xf)>}- (10)

k=1

The value of B that maximizes (10) can be computed by finding the
zeros of the derivative with respect to 8, which corresponds to

N Y B
——2) ——==0. 11
ﬁ ZB2+XI% ( )

k=1

To solve (11), Newton-Raphson’s root finding method was used,
starting with a small value (0.1) as the initial value of 3. Conver-
gence has been achieved in all experiments. The resulting value for
Bur can be seen as a reference value, thus it will be addressed to as
the “original” parameter value.

Now, let’s suppose that only quantized data is available for esti-
mating f3, which is the case at the receiver (decoder) side. The ML
method can still be used:

N

Bur = argmax {log [1PX0) } : (12)
k=1

where P(X) represents the probability of having value X at the

quantizer’s output. Assuming that the quantizer is linear with step

size g,, which may differ from block to block, and includes a dead

zone around 0, controlled by parameter o, P(X}) can be written as:

by
1 B
P = [ o
“ o (13)
B %tan_l(%), if X =0;
1 (taln_1 (%) —tan~! (%")) , otherwise.

Using (13) in (12) leads to:

A N 2 o
_ -1 L)
ﬁMLargmglx{ E log(ntan ( B ))+

ko=1
M a
klzztllog% <tan_l (%) —tan~! (E'))}

The two summation terms in (14) correspond to the two possible
cases in (13). In practice, the set of quantized coefficients X; has
been split according to those cases: quantized coefficients with zero
and non-zero values, respectively. Accordingly, Ny and N; repre-
sent the number of coefficients (at a given frequency), that fall in
those cases. The value of  that maximizes (14) can be obtained
by finding the zero of the derivative with respect to 8, which corre-
sponds to:

14)

ak] 7 hkl
% Brra B
1 ( bk i (ay
h=1tan~! <—‘) —tan—! <—‘)
! B B (15)
Al 0q,

=0.

koz=l tan—! (azko ) ((agr,)*+B?)

If Ny < N, a solution for (15) can be found numerically, using the
same method as in (11). If Ny = N, B — 0, meaning that the esti-
mated coefficient distribution is a Dirac’s delta function centered in
0. In other words, the ML method will fail if all coefficients to zero
at a given frequency are quantized to 0.

4.2 Laplace model

The coefficient’s distribution for the Laplace model is described by:

fx(x)= %exp(—l|x|), (16)

where A is the distribution’s parameter and x is the coefficient value.

Following a procedure similar to what has been done in subsec-
tion 4.1, an ML estimation for A using the original coefficient data,
is given by:

A an

==
Y1 e
where N represents the number of coefficients at the given fre-
quency and x;, is the coefficient’s value.
Assuming that only quantized data is available, A can be com-

puted using the ML method in the same way as in (12). In this case,
the probability P(X;) can be written as:

if Xk = O;
otherwise.

1 _ e*(xlqk
P(X;) = ! 18
( k) {;elb’f(elqk—l), ( )
Using (18) in (12), and looking for the zeros of the derivative with
respect to A will lead to:

% aqy, n % qy
alqko 1 - elqkl 1

a result that is similar to what has been derived in [3], for MPEG-
2 intra frames. Once again, the solution can be found by using
an iterative root finding algorithm. If N = Ny, A — oo, leading
to a phenomena that is equivalent to the described at the end of the
previous subsection, i.e., the estimated distribution is a Dirac’s delta
function.

bkl> =0, (19
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Figure 3: Neighbourhood configuration.

4.3 Improving parameter estimation using prediction

The problem of estimating the transform coefficients distribution’s
parameter when all coefficients have been quantized to zero can
be tackled by exploring the correlation between parameter values
at neighbouring DCT frequencies. For instance, when using the
Cauchy model in the I frames of the H.264 encoded versions of the
test sequences displayed in figure 4, the correlation between param-
eter values in a 4-connected neighbourhood is 0.93. Using matrix
notation, a prediction value for the distribution’s parameter, pp.q
(which can be the Cauchy’s “B” or the Laplace’s “A”) at a given
frequency can be computed as:

ﬁpred = Vlwv (20)
with
1 wo
pl)| wi
V= and w = ,
pDK WK

where v is a vector whose elements are parameter values taken from
the neighbourhood, K is the neighbourhood size and w is the linear
weight vector. w can be computed using least squares, minimizing
the square error between the “original” parameter values and p .4,
in a randomly chosen training set.

The neighbourhood configuration used in the experiments is il-
lustrated in figure 3. Since low-frequency coefficients are less vul-
nerable to the effects of lossy compression, its structure has been
chosen with the purpose of recursively predict parameter values,
starting from those frequency positions.

The linear prediction value, p,q, that results from (20) is then
combined with pyy; according to

ﬁf:rOﬁpred+(]_r0)ﬁML7 21

where ro = Ny/N represents the rate of coefficients quantized to
zero and py is the final estimate for the distribution’s parameter.
The idea is as follows: since ML estimates become more inaccurate
as the rate of coefficients quantized to zero increases, more trust is
given to the predictor in this case; on the other hand, if the num-
ber of coefficients quantized to zero is low, the ML estimator will
most likely get accurate results, so there is no need for the predicted
value.

5. RESULTS

5.1 Experimental setup

The video sequences depicted in figure 4 have been used in the
experiments. All sequences are CIF format (352 x 288), with a
frame rate of 25Hz, and have been encoded at 256, 512, and
1024 kbit/s, using the reference H.264 software [7]. A GOP-12
structure /BBPBBP... has been used in all encoding runs and only
the 4 x 4 transform size was allowed. The low complexity rate-
distortion optimization algorithm provided on the software has been
selected for faster encoding.

According to the type of the frame subject to PSNR estimation
I, P or B), different coefficient distribution models have been used.
The model that has been selected for each frame type was the one
leading to the highest PSNR estimation accuracy. To evaluate this,

Frame type Model
Laplace Cauchy
I 0.647 0.402
P 0.450 0.618
B 0.507 0.522

Table 2: Mean PSNR estimation error (dB).

the PSNR has been estimated using equations (4) and (5) and distri-
bution parameters have been estimated using the original coefficient
data. The resulting mean PSNR estimation error is depicted in ta-
ble 2. Based on these results, the Cauchy model was selected for the
I frames, while the Laplace model was selected for P and B frames.

Regardless of the selected model, parameter estimation has
been improved by adding prediction to the ML estimates, as de-
scribed in 4.3. The predictors have been trained with one half of
the available samples and separate training procedures have been
followed according to the frame type. The use of prediction lead to
an improvement of 43%, 22% and 27% on the no-reference PSNR
estimation error for I, P, and B frames, respectively.

The effect of skipped macroblocks that occur in P and B frames
has also been considered using the following error compensation
procedure:

MSE,y = r;MSE, + (1 — rs)MSEg, (22)

where r; is the rate of skipped MBs within the frame under analysis
and MSE,, is the MSE of the reference frame(s). MSE; is the
mean square error estimate given in section 3, considering the non-
skipped MBs only.

5.2 PSNR estimation results

Using the algorithm setup described in 5.1, the PSNR has been es-
timated and compared with its true value. Results are depicted in
figures 5(a) to 5(c), separated according to the frame type. As can
be observed from those plots, the proposed method is quite accu-
rate.

For comparison purposes, two recent algorithms [4, 5] have
been implemented as faithful to the original work as possible. The
algorithm proposed by Ichigaya et al. in [4] models the coefficients
distribution according to a mixture of two Laplace PDFs: one is es-
timated using all the quantized values, while the other is estimated
using non-zero quantized values only. It has been developed for
no-reference PSNR estimation of MPEG-2 encoded videos, but the
main ideas proposed in [4] can be easily adapted to H.264.

The algorithm proposed by Eden in [5] was developed for no-
reference PSNR estimation on H.264 encoded videos and also uses
the Laplace model. In short, this algorithm proposes a low complex-
ity parameter estimation method and deals with the “all quantized
to zero” problem by imposing empirical bounds for the parameter’s
value in those situations. An observation of the results depicted
in [5], suggests that this method is quite effective for I-frames, but
it is not very accurate for estimating the PSNR of P and B frames.

A comparison between the proposed method and our imple-
mentations of those methods is depicted on Table 3. As can be
observed from the table, the method proposed in this paper shows
the highest accuracy regardless of the frame type. Due to a more
complex parameter estimation methodology, the proposed method
is slower than the remaining ones. During the experiments, the av-
erage PSNR estimation computation time for a given frame was
36.3ms, taking about 4.5 and 6.4 times longer than Ichigaya’s and
Eden’s algorithms, respectively (for non-optimized implementation
code running on a P4@3.4GHz processor).

6. CONCLUSIONS AND FUTURE WORK

This paper proposes a no-reference PSNR estimation algorithm for
H.264 encoded video sequences. When compared with previous
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Figure 4: Video sequences used in the experiments. From left to right: Coastguard; Foreman; Mobile & Calendar; Stephan; Table-tennis;
Tempete. All sequences have 352 x 288 resolution and 25 Hz frame rates.
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Figure 5: No-reference PSNR estimation versus true PSNR.

I-frames P-frames
Ichigaya’s [4] Eden’s [5] proposed | Ichigaya’s [4] Eden’s[5] proposed
Mean absolute error [dB] 0.94 0.98 0.51 1.60 1.46 0.66
Root mean square error [dB] 1.12 1.16 0.66 1.93 1.84 0.85
Error value at percentile 99 [dB] 2.15 2.10 1.34 3.70 3.72 1.71
Correlation 0.99 0.99 0.99 0.96 0.98 0.99
B-frames All frames
Ichigaya’s [4] Eden’s [S] proposed | Ichigaya’s [4] Eden’s[5] proposed
Mean absolute error [dB] 1.99 1.90 0.67 1.81 1.71 0.65
Root mean square error [dB] 2.39 2.30 0.89 2.20 2.12 0.86
Error value at percentile 99 [dB] 4.38 4.39 1.81 4.16 4.12 1.77
Correlation 0.94 0.98 0.98 0.94 0.98 0.99

Table 3: No-reference PSNR estimation error statistics.

work in this field [4,5], it has the ability to compute local errors and
uses a different coefficient distribution model in the I frames. Addi-
tionally, it tackles the problem of estimating distribution parameters
when all coefficients have been quantized to zero exploring corre-
lation between parameter values at adjacent DCT frequencies. The
cost is an increase in complexity, mainly due to iterative search of
parameter values. Nevertheless, it showed better PSNR estimation
accuracy than the reference algorithms, on the video sequences used
in the experiments, justifying the increase in complexity.

Since PSNR is a rough quality metric we plan, as further work,
to weight the estimated local errors according to spatio-temporal
making effects, in order to obtain a video quality metric that corre-
lates better with the human perception of quality.

REFERENCES

[1] ITU-T H.264 - Advanced video coding for generic visual ser-
vices, March 2005.

[2] T. Brandao and M. P. Queluz, “No-reference image quality as-
sessment based on DCT domain statistics ”, Signal Processing,
vol. 88, n. 4, pp. 822-833, April 2008.

[3] T.Brandédo and M. P. Queluz, “Blind PSNR estimation of video
sequences using quantized DCT coefficient data”, in Proc. of
Picture Coding Symposium 2007, Lisbon, Portugal, Nov. 2007.

[4] A.Ichigaya, M. Kurozumi, N. Hara, Y. Nishida, and E. Nakasu,
“A method of estimating coding PSNR using quantized DCT
coefficients”, IEEE Transactions on Circuits and Systems for
Video Technology, vol. 16, n. 2, pp. 251-259, Feb. 2006.

[5] A. Eden, “No-reference estimation of the coding PSNR for
H.264-coded sequences”, IEEE Transactions on Consumer
Electronics, vol. 53, n. 2, pp. 667-674, May 2007.

[6] 1. Richardson, H.264 and MPEG-4 video compression, John
Wiley & Sons, 2003.

[7] JM 12.4 - H.264 reference software, available online at http:
//iphome.hhi.de/suehring/tml/, 2007

[8] Y. Altunbasak and N. Kamaci, “An analysis of the DCT coeffi-
cient distribution with the H.264 video coder”, in Proc. of IEEE
Int. Conf. on Acoustics, Speech and Signal Processing, vol. 3,
pp. 177-180, May 2004.

[9] R. Duda, P. Hart and D. Stork, Pattern Classification - 2nd Edi-
tion, Wiley-Interscience, 2000.



