
CONSTRAINED POLE-ZERO LINEAR PREDICTION: AN EFFICIENT AND
NEAR-OPTIMAL METHOD FOR MULTI-TONE FREQUENCY ESTIMATION

Toon van Waterschoot and Marc Moonen

Dept. E.E./ESAT, SCD-SISTA, Katholieke Universiteit Leuven
Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
phone: +32 16 321709, fax: +32 16 321970
email: {tvanwate,moonen}@esat.kuleuven.be
web: http://homes.esat.kuleuven.be/∼tvanwate

ABSTRACT

Constrained pole-zero linear prediction (CPZLP) is proposed as a
new method for parametric frequency estimation of multiple real
sinusoids buried in noise. The method is based on a signal model
that consists of a cascade of second-order constrained pole-zero
models, thereby exploiting the linear prediction property of sinu-
soidal signals. The signal model is parametrized directly with the
unknown frequencies, which are then estimated using a numerical
optimization approach. By independently optimizing each second-
order stage in the cascade model, a computationally efficient algo-
rithm is obtained with a complexity that is linear in both the data
record length and the number of sinusoids. The linear complexity
allows for using relatively long data records, leading to high ac-
curacy even at low signal-to-noise ratios (SNR). Simulation results
confirm that the CPZLP algorithm nearly achieves the Cramér-Rao
lower bound for SNR as low as 5 dB.

1. INTRODUCTION

The problem of estimating the frequencies of a sum of sinusoidal
signals (multi-tone signals) buried in additive noise has received a
lot of attention during the past decades. Solutions to this problem
have been applied in many different areas, such as audio and speech
processing, radar signal processing, telecommunications, etc. The
existing methods are usually categorized as being either nonpara-
metric or parametric. Nonparametric frequency estimation is di-
rectly based on Fourier transform theory, hence the signal is pro-
cessed in a frame-based manner. The main drawback of nonpara-
metric methods is their limited frequency resolution for finite frame
length. Parametric methods, on the other hand, can achieve a higher
resolution but require the postulation of a generating signal model.
We refer to [1] for a recent overview of parametric frequency esti-
mation methods.
A particular class of parametric methods exploits the linear pre-

diction (LP) property of sinusoidal signals. It is well known that a
sum of P sinusoids can be described exactly using an all-pole model
of order 2P, with mirror symmetric LP coefficients [1]. However,
it has been shown that the all-pole model is not exact when noise
is added, and in this case a pole-zero model of order 2P should be
used [2]. Still, by constraining the poles and zeros to lie on common
radial lines in the z-plane, the number of unknown parameters in the
pole-zero model can be limited to P and the LP parameters can be
uniquely related to the unknown frequencies [3]. The constrained
pole-zero model has been widely applied in adaptive notch filtering
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(ANF), see, e.g., [3]-[5]. The ANF algorithms are however very
sensitive to the choice of the initial conditions and the exponential
forgetting factor, and in nonstationary scenarios memory resetting
of the ANF is regularly required to enable sufficiently fast tracking.

In this paper, we describe a new parametric frequency estima-
tion method that is based on the constrained pole-zero model pro-
posed in [3], realized using a cascade of second-order sections with
a direct frequency parametrization [4],[5]. The proposed method
is referred to as constrained pole-zero linear prediction (CPZLP)
and, in contrast to the ANF approach, the signal is processed in
a frame-based manner. In the CPZLP method, the minimization
of a least-squares (LS) objective for multi-tone frequency estima-
tion is decoupled into a set of single-tone subproblems that can be
solved consecutively by exploiting the cascade structure of the sig-
nal model. Each subproblem can be viewed as a single-variable
unconstrained nonlinear optimization problem, and is solved itera-
tively using a numerical line search method [6, Ch. 3]. Because of
the decoupling, the CPZLP method achieves a computational com-
plexity that depends linearly on the frame length and on the number
of second-order sections, even when Hessian information is used in
the optimization method. As a consequence, relatively long frame
lengths can be used to increase the noise robustness.

The paper is organized as follows. In Section 2, we introduce
the constrained pole-zero signal model and derive the CPZLP algo-
rithm by considering the decoupled optimization of the LS objec-
tive. We describe a line search method with three possible ways of
calculating the search direction (steepest descent, Gauss-Newton,
and quasi-Newton), and provide details on the gradient and Hes-
sian calculation. Section 3 deals with the computational complexity
of the CPZLP algorithm, and Section 4 contains Monte Carlo sim-
ulation results that illustrate the CPZLP performance in terms of
frequency variance as compared to the Cramér-Rao lower bound
(CRLB). Finally, Section 5 concludes the paper.

2. CONSTRAINED POLE-ZERO LINEAR PREDICTION

2.1 Signal model

The observed signal y(t) is assumed to consist of a sum of real si-
nusoids and additive noise,

y(t) =
P

∑
n=1

An cos(ωnt+φn)+ r(t), t = 1, . . . ,N (1)

with An the amplitude, ωn ∈ [0,π] the radial frequency, and φn ∈
[0,2π) the phase of the nth sinusoid. While most parametric fre-
quency estimators rely on the hypothesis that the noise r(t) is white
[1], we do not make explicit assumptions about the noise. The CP-
ZLP algorithm has been tested both with white noise, see Section 4,
and with colored noise, see [7]. Troughout this paper, it is assumed
that the number of sinusoids P in the observed signal is known a
priori, which is a common assumption in parametric frequency es-
timation [1], [3]-[5]. We should note that the CPZLP approach can
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be elegantly extended to achieve joint order and frequency estima-
tion [7]. The frequencies ωn are assumed to be stationary over the
observed data frame t ∈ [1,N]. Frequency tracking in a nonstation-
ary environment is possible if CPZLP is preceded by an adaptive
segmentation.
It is well known that a sum of P sinusoids can be described ex-

actly as an autoregressive process of order 2P. A sum of P sinusoids
in additive white noise, similarly, can be modeled as an autoregres-
sive moving average process of order 2P, having zeros that coin-
cide with the poles [2]. This observation has led to the constrained
pole-zero model for signals that consist of sinusoidal or narrowband
components in noise [3], which is given as

y(t) =

2P

∑
i=0

ρ iaiz
−i

2P

∑
i=0

aiz
−i

e(t). (2)

This model has been widely used for deriving ANF algorithms. The
LP coefficients ai in (2) are mirror symmetric because the poles
are constrained to lie on the unit circle, i.e., ai = a2P−i and also
a0 = a2P = 1. Moreover, the zeros are constrained to lie on the
same radial lines as the poles, at a constant distance ρ from the ori-
gin (0 ≤ ρ < 1). Note that ρ is defined as the pole radius or pole
contraction factor since in the prediction error filter, corresponding
to the inverse signal model, ρ appears in the denominator. Through-
out this paper, ρ is assumed to be a fixed parameter, the choice of
which is however of great importance to the frequency estimation
performance. The residual signal e(t) is usually assumed to be an
uncorrelated sequence, such as a white noise sequence or a Dirac
impulse. With the aim of achieving direct frequency estimation, the
model in (2) is sometimes rewritten using a second-order sections
cascade structure [4], [5],

y(t) =

(

P

∏
n=1

1−2ρ cosθnz
−1+ρ2z−2

1−2cosθnz−1+ z−2

)

e(t) (3)

with θn ∈ [0,π] denoting the angles of the pole-zero pairs in the
upper half of the z-plane.

2.2 Decoupled optimization

The goal of the proposed frequency estimation method is to have the
angles θn in the constrained pole-zero signal model (3) converge to
the frequencies ωn of the observed signal in (1). To this end, a LS
objective is defined as follows:

V (ϑ) =
1

N

N

∑
t=1

e2(t,ϑ) (4)

with, from (3),

e(t,ϑ) =

(

P

∏
n=1

1−2cosθnz
−1+ z−2

1−2ρ cosθnz−1+ρ2z−2

)

y(t) (5)

and
ϑ = [θ1 . . . θP]

T . (6)

Instead of directly minimizingV (ϑ) w.r.t. the parameter vector
ϑ , we divide the minimization problem into P subproblems. Let the
intermediate residual signal en(t,ϑn) be defined as the output of the
nth section of the prediction error filter cascade,

en(t,ϑn) =

(

n

∏
l=1

1−2cosθlz
−1+ z−2

1−2ρ cosθlz−1+ρ2z−2

)

y(t) (7)

with
ϑn = [θ1 . . . θn]

T
(8)

and eP(t,ϑP) = e(t,ϑ). Then the nth subproblem is defined as fol-
lows:

min
θn
Vn(ϑn) =min

θn

1

N

N

∑
t=1

e2n(t,ϑn). (9)

Note that the minimization in (9) is performed w.r.t. θn only, while
the objective Vn(ϑn) depends on the entire vector ϑn. However, if
the subproblems are solved consecutively, starting at n = 1, then
in the nth subproblem, estimates for θ1, . . . ,θn−1 are available and
only θn needs to be estimated. As a consequence, the subproblems
are entirely decoupled and can be treated individually.
The solution to the nth subproblem is obtained iteratively using

a line search optimization method [6, Ch. 3], i.e.,

θ
(k+1)
n = θ

(k)
n + µkp

(k) (10)

with k ∈ N the iteration index. The step length µk is determined
using backtracking with Armijo’s sufficient decrease condition [6,

Ch. 3]. The search direction p(k) can be obtained with one of the
following methods:

1. Steepest descent (SD):

p(k) = −
∂

∂θn
Vn
(

ϑ̂
(k)
n

)

(11)

in which

ϑ̂
(k)
n =

[

θ̂
(κ1)
1 . . . θ̂

(κn−1)
n−1 θ̂

(k)
n

]T
(12)

with κi, i= 1, . . . ,n−1 the index of the final iteration in the
ith subproblem, and k the current iteration index in the nth
subproblem.

2. Gauss-Newton (GN):

p(k) = −

(

∂
∂θn

en

(

ϑ̂
(k)
n

)

)T
en

(

ϑ̂
(k)
n

)

(

∂
∂θn

en

(

ϑ̂
(k)
n

)

)T(
∂

∂θn
en

(

ϑ̂
(k)
n

)

)

(13)

with

en(ϑn) = [en(1,ϑn) . . . en(N,ϑn)]
T . (14)

3. Quasi-Newton with damped BFGS updating [6, Ch. 18]
(BFGS) :

p(k) = −B−1
k

∂

∂θn
Vn
(

ϑ̂
(k)
n

)

(15)

Bk+1 = Bk−
Bksks

T
k Bk

sT
k
Bksk

+
uku
T
k

uT
k
sk

(16)

with

sk = θ̂
(k+1)
n − θ̂

(k)
n (17)

vk =
∂

∂θn
Vn
(

ϑ̂
(k+1)
n

)

−
∂

∂θn
Vn
(

ϑ̂
(k)
n

)

(18)

uk = λvk+(1−λ )Bksk (19)

and

λ =











1 if sTk vk ≥ γsTk Bksk (20)

(1− γ)
sTk Bksk

sT
k
Bksk− s

T
k
yk

if sTk vk < γsTk Bksk (21)

The parameter γ ∈ (0,1) is usually chosen as γ = 0.2 [8].
Since each CPZLP subproblem is a scalar optimization
problem, the Hessian approximation Bk, the displacement
vector sk, the change of gradients vector vk and its damped
counterpart uk are all scalars, and the general BFGS calcu-
lations in (16), (19)-(21) can be greatly simplified:

Bk+1 =max
( vk

sk
,γBk

)

. (22)
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The iterative algorithm for solving the nth subproblem is termi-
nated at iteration κn, either when

∣

∣

∣

∣

p(κn)
∂

∂θn
Vn
(

ϑ̂
(κn)
n

)

∣

∣

∣

∣

≤ τ (23)

with τ a specified tolerance, or when the maximum number of iter-
ations is reached, i.e., κn = kmax.

2.3 Gradient and Hessian calculation

The above methods for calculating the search direction p(k) in the
line search algorithm in (10) require gradient and Hessian informa-

tion, which can be calculated using either ∂
∂θn
Vn(ϑn) (in the SD

and BFGS methods) or en(ϑn) and
∂

∂θn
en(ϑn) (in the GN method).

These quantities can be calculated in an efficient manner as follows.
From the definition of en(t,ϑn) in (7) it follows that

en(t,ϑn) =
1−2cosθnz

−1+ z−2

1−2ρ cosθnz−1+ρ2z−2
en−1(t,ϑn−1) (24)

with e0(t) = y(t). This filtering operation can be executed for
t = 1, . . . ,N provided that the initial filter states are known. For
simplicity, we set en(t,ϑn) = en−1(t,ϑn−1) = 0 for t ≤ 0. The in-
termediate residual signal vector en(ϑn) can be constructed from
en(t,ϑn), t = 1, . . . ,N as in (14).
By differentiating both sides of (24) w.r.t. θn, we obtain

∂

∂θn
en(t,ϑn) =

2(1−ρ)sinθnz
−1(1−ρz−2)

(1−2ρ cosθnz−1+ρ2z−2)2
en−1(t,ϑn−1) (25)

which can again be calculated for t = 1, . . . ,N by setting
∂

∂θn
en(t,ϑn) = en−1(t,ϑn−1) = 0 for t ≤ 0. The derivative vector

∂
∂θn

en(ϑn) is constructed using
∂

∂θn
en(t,ϑn), t = 1, . . . ,N.

Finally, the gradient ∂
∂θn
Vn(ϑn) can be calculated by differenti-

ating (9), i.e.,

∂

∂θn
Vn(ϑn) =

2

N

N

∑
t=1

(

∂

∂θn
en(t,ϑn)

)

en(t,ϑn) (26)

=
2

N

(

∂

∂θn
en(ϑn)

)T

en(ϑn). (27)

The above quantities should be evaluated at ϑn = ϑ̂
(k)
n for cal-

culating the search direction in (11), (13), and (15). It follows from
(12) that this evaluation can be achieved by replacing θn with its

current estimate θ̂
(k)
n in the filter transfer functions in (24) and (25),

and by evaluating en−1(t,ϑn−1) at ϑn−1 = ϑ̂
(κn−1)
n−1 (which has al-

ready been done in the final iteration of the (n−1)th subproblem).

3. COMPUTATIONAL COMPLEXITY

The operations that are performed in each iteration k of the nth sub-
problem in the CPZLP algorithm are summarized in Table 1, with
reference to the relevant equations and with the number of multipli-
cations as a measure for computational complexity. The number of
backtracking steps needed until Armijo’s sufficient decrease condi-
tion is satisfied in iteration k of subproblem n, is denoted by βn,k.
The computational complexity of the entire CPZLP algorithm

can then be calculated as follows. As an example, we derive the
total number of multiplications MBFGS when the BFGS method is
applied. From Table 1, we have

MBFGS =
P

∑
n=1

( κn

∑
k=1

(

(13+3βn,k)N+(17+5βn,k)
)

)

(28)

= (13N+17)
P

∑
n=1

κn+(3N+5)
P

∑
n=1

( κn

∑
k=1

βn,k

)

(29)

= (13N+17)κ̄P+(3N+5)
P

∑
n=1

κnβ̄n (30)

with κ̄ the average number of iterations per subproblem and β̄n the
average number of backtracking steps per iteration in subproblem
n, i.e.,

κ̄ =
1

P

P

∑
n=1

κn, β̄n =
1

κn

κn

∑
k=1

βn,k. (31)

Assuming that the average number of backtracking steps per

iteration is the same for all subproblems, i.e., β̄1 = . . . = β̄P = β̄ ,
the computational complexity for the three different methods can be
written as

MSD = κ̄P
[

(13+3β̄ )N+(14+5β̄ )
]

MGN = κ̄P
[

(14+3β̄ )N+(15+5β̄ )
]

MBFGS = κ̄P
[

(13+3β̄ )N+(17+5β̄ )
]

(32)

From the above expressions, it is clear that the computational com-
plexity is linear w.r.t. both the frame length N and the number of si-
nusoids P. As a consequence of decoupling the problem into scalar
subproblems, the GN and BFGS methods are not significantly more
expensive than the SD algorithm, although they do take into ac-
count Hessian information in the optimization algorithm. The ac-
tual complexity depends on the average number of iterations and
backtracking steps per iteration in the P subproblems. This leads to
the peculiar observation that the fastest converging method will also
have the lowest complexity, which is in contrast with the traditional
trade-off between convergence speed and complexity.

4. SIMULATION RESULTS

Monte Carlo simulations were carried out to validate the perfor-
mance of the CPZLP algorithm. The observed signal is a sum
of P = 3 sinusoids, with amplitudes [A1,A2,A3] = [1,0.5,1.5],
radial frequencies [ω1,ω2,ω3] = [0.25,0.4,0.7]π , and phases
[φ1,φ2,φ3] = [0,0.8,1.5]π . The pole radius is fixed to ρ = 0.95,
which appears to be an optimal value for most sinusoidal frequency
estimation problems [7]. The optimization algorithm parameters

are set as recommended in [6]: the initial step length is µ
(0)
k

= 1,

the contraction factor determining the step length µ
(m)
k

= ηmµ
(0)
k
in

the mth backtracking step is η = 0.9, the scaling factor determining
Armijo’s sufficient decrease condition is c= 10−4, Powells param-
eter in the damped BFGS update is γ = 0.2 [8], the termination
criterion tolerance is τ = 10−6, and the maximum number of itera-

tions per subproblem is kmax = 30. The initial estimate θ̂
(0)
n = π/3

is chosen equal for all three subproblems, to illustrate the sensitivity
of the algorithm w.r.t. the choice of initial conditions. An additional
rescue procedure is implemented, which restarts the iterative proce-
dure for subproblem n with a different initial estimate if κn = kmax.
When after five rescue restarts, subproblem n still remains unsolved,

we set θ̂n = π/2 and continue with subproblem n+1.
The CPZLP algorithm is evaluated w.r.t. frequency bias and

frequency variance, defined as (n= 1,2,3)

bias
(

θ̂
(κn)
n

)

= E
{

θ̂
(κn)
n

}

−ωn (33)

var
(

θ̂
(κn)
n

)

= E
{

(θ̂
(κn)
n −ωn)

2
}

. (34)

The expectation operator E{·} in (33)-(34) is approximated by av-
eraging over 100 simulation runs, with different realizations of the
Gaussian white noise signal r(t). The CPZLP algorithm was found
to produce approximately unbiased frequency estimates forN ≥ 256
and SNR ≥ 0 dB (SD), N ≥ 512 and SNR ≥ 25 dB (GN), and
N ≥ 512 and SNR ≥ 10 dB (BFGS).
The frequency variance is displayed in Figs. 1(a)-(c) as a func-

tion of different frame lengths N ∈ [64,8192], with SNR = 15 dB.
The CRLB for estimating ωn, n= 1,2,3, from the true signal model
in (1) is also shown in Fig. 1, and was calculated under the assump-
tion that the sinusoidal frequencies are not near 0 and π [9, Ch.
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Table 1: CPZLP complexity comparison: number of multiplications in iteration k of subproblem n

calculation of Eqs. SD GN BFGS

gradient (24)-(26) 10N+6 10N+6 10N+6
Hessian (13),(17),(18),(22) 0 N 2

search direction (11),(13),(15) 1 2 2
termination criterion (23) 1 1 1
step length [6, p. 37] (1+βn,k)(3N+5) (1+βn,k)(3N+5) (1+βn,k)(3N+5)

parameter estimate (10) 1 1 1

TOTAL (13+3βn,k)N+(14+5βn,k) (14+3βn,k)N+(15+5βn,k) (13+3βn,k)N+(17+5βn,k)

3] and sufficiently separated from each other [7]. In this case, the
Fisher information matrix is diagonal and the CRLBs for the differ-
ent frequencies are independent and equal to [7], [9, Ch. 3]

CRLB(ωn) =
6

N(N+1)(2N+1)SNRn
(35)

with SNRn = A2n/(2σ2r ) and σ2r the noise variance. It can be seen

that with the GNmethod, only var(θ̂
(κ1)
1 ) comes close to the CRLB,

which is probably due the proximity of θ̂
(0)
1 to ω1 and the relatively

good SNR1. The BFGSmethod performs much better, with all three
variance curves staying near the CRLB for N ≥ 512. Figs. 1(d)-
(f) show the frequency variance versus SNR ∈ [−10,40] dB, with
N = 2048. With the GN and BFGS methods there is a clear treshold
effect, i.e., the variance suddenly drops for SNR ≥ 25 dB (GN)
and SNR ≥ 15 dB (BFGS). In favorable estimation conditions the
treshold effect can occur at SNR as low as 5 dB (which is illustrated

by the var(θ̂
(κ1)
1 ) curve in Figs. 1(e)-(f)).

To have an idea of the actual computational complexity, the re-
quired number of iterations κn and the average number of back-
tracking steps per iteration β̄n are plotted for n= 1,2,3 as a function
of N and SNR in Fig. 2. It is clear that the SD method is not suited
for the frequency estimation problem under consideration. The GN
method requires more iterations than the BFGS method, but due to
the fact that GN consistently produces estimates that meet Armijo’s

sufficient decrease condition without backtracking (β̄n ≡ 0), it is
computationally cheaper than BFGS.

5. CONCLUSION

We have presented a new parametric frequency estimation method
for multiple real sinusoids corrupted by noise. The so-called CP-
ZLP algorithm provides frame-based frequency estimation by op-
timizing the parameters of a cascade of second-order constrained
pole-zero filter sections in a decoupled and consecutive fashion.
Each of the unknown frequencies is estimated using a line search
optimization algorithm, which has been implemented with three
popular line search methods (SD, GN, and BFGS). The compu-
tational complexity of the CPZLP algorithm is linear w.r.t. both
the number of sinusoids and the frame length, such that long data
frames can be used and hence noise robustness is increased. Monte
Carlo simulation results show that the BFGS method is particularly
promising, since it provides unbiased and near-optimal frequency
estimates for frame lengths larger than 512 samples and SNR as
low as 5 dB in favorable estimation conditions and 15 dB in worse
conditions. Since the required number of iterations and backtrack-
ing steps has a profound effect on the actual complexity, the faster
converging GN and BFGS methods are computationally much more
interesting than the SD method. Further work [7] includes an ex-
tension of the CPZLP algorithm to multi-pitch estimation and an
approach to joint order and frequency estimation.
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Figure 1: CPZLP frequency variance and CRLB, (a)-(c) versus frame length N, (d)-(f) versus SNR.
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Figure 2: CPZLP number of iterations κn and average number of backtracking steps per iteration β̄n, (a)-(c) versus N, (d)-(f) versus SNR.
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