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ABSTRACT

In this study, we introduce a new method for image sepa-
ration problem using Monte Carlo (MC) integration method.
The proposed method stands between Gibbs sampling and
deterministic optimization based Iterated Conditional Mode
(ICM) methods. In this sense, it incorporates the better of
the two paradigms, in that it is 2 to 3 times faster than Gibbs
sampling and shows better performance compared to ICM.
The novelty of the method consists in the use of the condi-
tional expectation of some robust error function as a cost
Sfunction for pixels. The point estimate, that is the minimum of
the robust error function, is found iteratively using a gradient
descent algorithm. The stochastic gradient itself is computed
using importance sampling since the posterior is not inte-
grable analytically. Furthermore at each iteration, only the
point estimates are saved, in contrast to sequential MC meth-
ods which save all of the particles (samples) of a single vari-
able and evaluate them sequentially. The mixing matrix is es-
timated by the the Mean Square Error (MSE) algorithm, and
the source images are modelled via Markov Random Fields
(MRF).

1. INTRODUCTION

The separation of images from their mixtures given a number
of observations can be interpreted as an inverse problem. The
literature has witnessed several solutions to image separation
based on the estimation of a de-mixing matrix using vari-
ous contrast functions. Recently this problem has been ad-
dressed within the Bayesian paradigm. Notably Kuruoglu et
al. [1] have used the Bayesian technique to image separation
problem. They modelled the prior of the pixel values with
a MRF. Tonazzini et al. [2] applied mean field approxima-
tion to MRF and used EM algorithm to estimate the sources
and the mixing matrix parameters. [3] applied a variational
approximation to image priors modelled as MRF, with the
purpose of converting a non-convex problem into a convex
one.

These methods achieve source separation by finding the
MAP estimates of all the variables, that is, mixing coeffi-
cients, pixels of all components and additive noise variance.
The MAP estimate is, however, convenient for unimodal pos-
terior densities because otherwise it becomes very tedious
to find the global maximum point among local maxima. A
way to overcome this impasse is Markov chain Monte Carlo
(MCMC) methods [4]. For example Gibbs sampling, which

is one of the MCMC methods, reaches a solution by draw-
ing random samples from posterior densities instead of find-
ing local maxima of the corresponding density. By drawing
samples from the estimated posterior density, the solution
space is better explored especially after the initial transient
estimates (the burn-in period).

The proposed MC algorithm consists in sampling the full
density rather than generating single samples to stalk lo-
cal maxima. Our approach is essentially applying particle
method to estimate the a-posteriori distribution on a pixel by
pixel basis. In other words, we do not estimate pixels di-
rectly, but we first estimate their pdf. The advantage is that,
once the a posterior pdf’s are available, one can attain diverse
estimators that range from MSE to error entropy minimizer.
We exploited a cost function which is formed by taking the
expectation of a robust error function with respect to poste-
rior density. The general case of this cost function can be
found in [5]. In [5], a pdf is assigned to the error and an in-
formation theoretic cost function is used. A closed form so-
lution using our cost function is not readily available, so we
used a gradient descent type iterative method. But the gra-
dient of the cost function contains a stochastic integral. We
overcome the calculation of the integral using a Monte Carlo
integration technique. In [5], the Parzen density estimation
was used for calculating integral. The proposed method can
be seen as a generalized version of the Least Mean Square
(LMS) algorithm.

In particle filtering methods, the purpose is to calculate
the integral by Monte Carlo methods for finding the point
estimates of variables. The basic deterministic method for
calculating integrals numerically is the finite difference ap-
proximation. In this method, the estimate is obtained by
sampling the pdf of the variable uniformly, provided there
is a sufficient number of samples. If the number of samples
is not sufficient, the integral can still be accurately calculated
by drawing samples from the highly probable regions, the
so-called importance sampling (IS) scheme. This leads nat-
urally to the computation of the integrals by using random
samples. If generating samples from posterior density turns
out to be difficult, the samples are produced from a proposal
or importance density. For example in MRF-modelled im-
ages, it may not be easy to draw samples from the Gibbsian
form of pixel densities.

The Sequential MC sampler (SMC) [6], where the sig-
nal is assumed to form a Markov process, is valid for 1D
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causal signals, and its direct application to 2D signals is not
straightforward. If only the causal neighborhood of pixels
is considered to condition the pixel pdf’s, than half of the
neighborhood information is sacrificed. Costagli et al. [7]
suggest a partial solution to this problem by fusing multiple
1D particle filters. To recuperate the loss of information due
to their 1D stratagem they scan the image in several different
directions and then fuse these estimates.

In another 2D particle filter realization applied to image
restoration, Nittono et al. [8] used the prior density of MRF-
modelled image as the importance function. Zhai et al. [9]
used particle representation of the pdf of the pixel intensi-
tiesand saved particles of only one pixel at a time. They
evaluate these particles using 1D importance function whose
parameters are obtained by a Kalman filter. Our method also
uses the MRF model for images, but it differs from previ-
ous studies in [8, 9] in that we use a robust point estimator
denoted as iterated posterior point estimator. We use Monte
Carlo method to obtain the point estimates but do not save the
particles of any one pixel in memory, but only its point esti-
mate. Our second contribution is that we apply the proposed
2D particle method to image separation problem.

The rest of the paper is laid out as follows. In Section
2, the problem formulation will be presented in the Bayesian
framework. In Section 3, the details of the iterated posterior
point estimation algorithm will be revealed. The simulation
results are given in Section 4.

2. PROBLEM FORMULATION

In this study, we use linear mixing model with additive Gaus-
sian noise
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where y.x and s1.7, are vector representations of observation
and source images, respectively. If the size of images are de-
noted as N = N; X N, the length of the vector representation
of images becomes N x 1. V is a K X N zero mean white
noise matrix and A is K x L mixing matrix. The sources are
assumed to be independent. So the joint probability density
is factorized as p(sy..) = [T, p(s)).

The joint posterior density of unknowns is expressed as
p(si.L,Aly1:x). The sources and the mixing matrix are es-
timated by maximizing the a posteriori probability, that is,
by finding the MAP solution of the problem. But it is not
straightforward to find a joint estimate. The ICM (Iterated
Conditional Mode) algorithm has been used to reach joint
solution by separating the problem into consecutive maxi-
mization steps for each variable. In our approach, we also
separate the problem into consecutive steps but do not at-
tempt to obtain the MAP estimate directly. Instead, we define
a mean error function and find its solution iteratively using
MC methods. The details will be given in the next section.

We need the posterior density of each variable for esti-
mation. According to Bayes rule, the posterior of nth pixel
of the /th source is written as

P(Sl,n|}’1zk,S1:L7(1,n)7A) o< p(Yl:K|Sl:LaA)p(sl,n|SI:L7(l,n%%

where the notation sy.; _(; ,) represents all of the source im-
ages pixels except the nth pixel of the /th source and n =
1,...,N. Since the image is modelled as MREF, the prior den-
sity of pixel n, p(si.u|S1..—(1,n)) = P(S1.n|591,1)- 18 in the Gibbs
form where dn represents the first order spatial neighbors of
the pixel. The Gibbs distribution is given as

[ Sin—s
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where the clique potential function p(.) is chosen as the log-
arithm of the Cauchy density
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where m € dn.

The likelihood factor in (2) is Gaussian because of the
noise model, and therefore the posterior is formed by multi-
plying a Gaussian and a Cauchy density. The MAP solution
using this posterior expression can be found by optimization,
for example, via some descent algorithm. However the con-
vergence is not guaranteed since the clique potential is not
convex. Gibbs sampling is a more proper approach in this
case, though the computational complexity is significantly
higher. Instead of applying a descent algorithm on (2) or re-
verting to Gibbs sampling, we propose an alternate robust
approach, that of sampling the entire posterior using particle
methods, as detailed in the next section.

The posterior of an element of the mixing matrix is given
as

Placi| A, Yik,81L) & p(yiklsir, acn, A_wp)  (5)

where A_ ;) is the part of A which does not contain the
element (k, /). The uniform prior is chosen for A.

3. ITERATED POSTERIOR POINT ESTIMATION

The particle methods represent the posterior pdf of a random
variable by drawing some particles and assigning a weight
to each of them. In sequential MC, this procedure is per-
formed by evaluating only a single pdf sequentially. In this
case only one sampled pdf is kept in the memory. For a 1D
sequence this is all that is needed. But in the 2D case, saving
the pdfs of the pixels already visited needs more memory and
furthermore, producing new particles based on the particles
of neighbors is not straightforward. In our approach, we save
only point estimates of the pixels, and to this effect we use
importance sampling.

We choose the minimum of the expected value of a robust
error function, given in (6), as our point estimate. If an ana-
lytical form is not available, the minimum of the robust error
function can be reached iteratively. We use at each iteration
importance sampling on the posterior of the variable. The
point estimation detail given for a single pixel of a source in
(8) is applicable to all other pixels and the mixing matrix co-
efficients. The expectation of the robust error function of a
pixel is given as:

€= /‘g(slﬁn_§17n)p(sl,n|y1:1(7SI:Lf(Ln)aA)dsl,n (6)
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Fortimest=1:T
For all source images, [ =1: L

For all pixels,n=1:N

()

e Fori=1:1, sample sl<'r)1 ~ U (S plS10—0,51,+0)
e Evaluate the importance weights w

e Normalize the importance weights w
e Calculate the new point estimate §§’n using 8 and 10

For all elements of the mixing matrix, (k,/) = (1,1) : (K,L)
e For j=1:J, sample agy ~ p(y];K|s1:L,akJ,A,(kvl))

e Calculate the MSE estimate aA;c‘ ; using 14

(i)
Ln
(i)

Ln

using 11

using 12

Table 1: The iterated posterior point estimation algorithm.

where the g(.) is a robust function for error. If the g(.) = |.|
which is the mean squared error case, the solution can be

found analytically as

A

Stn = Elsialyik:Si—un), Al
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This is the MSE estimate of s,. But in a more general
case as in (6), we can find the solution using iterative tech-
niques. If the steepest descent method is used, we can write
the one step iteration of s, as

A

Sin =St — I / & (510 = $1.0) P(S1.0|Y1:K,S1:—(10)» A) S
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where §;, is the new estimation, g'(.) is the first derivative
of g(.), and the y is the step size of the descent method. We
choose the robust function as g(.) = |.|? where 1 < p <2.The
posterior density expression in the integrand is formed as

P(Sl.,n|YI:KaSl:Lf(l,n)7A) o< p(y11K|sl,mSl:L7(1,n)7A) x
P(S1.01501,0) ©)

If we consider the SMC sampling, the likelihood term
P(Y1:k[81.0581:L—(1,0), A), corresponds to observation proba-
bility and the prior of 57, p(s;|s5;.,), corresponds to tran-
sition probability. In this case, the prior density define the
spatial transition probability of a 2D MRF.

To calculate the integral in (8), we use Monte Carlo in-
tegration. The direct sampling from posterior density is not
straightforward, so we can use MCMC techniques for this.
For avoiding the difficulty of MCMC, we use the importance
sampling method. For this purpose, we choose a importance
density, q(s1,1[S1..—(1,n):51,n,¥1:k,A), and draw the random
samples from this density. The approximate integral is writ-
ten as

"y a p(sl,n )
'/g (sl,n_sl,n)r

q(sinl.)ds;n ~
Sl,n|-) ( nl) n

1 . .
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where [ is the number of samples and

(i) p(Yl:K‘SEf,),vSI:Lf(l,n)>A)p(s[(f;)1‘st9[,n)
W, = — . (11
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i=1"In

—(i) _
Win =

The importance density is chosen as a uniform den-
sity such that g(s; |S1..—(1,0), 1.0, Y1:65, A) = q(51.0]81.0,0) =
U (510|810 — 0,81, + 0) where 6 is a scalar positive number
that determines a bound for s; ,.

In particle methods, all of the particles (samples) are
saved in the memory and they are passed the next state. This
procedure becomes more expensive for 2D images because
each pixel has eight first order neighbors. For example, if we
consider only the four past (causal) neighbors in the scan-
ning direction, we must keep in memory all of the particles
of top row pixels. Instead of keeping this amount of parti-
cles, we only keep their point estimates. This is the reason
why we name the algorithm iterated posterior point estimate.
The contribution of the point estimates of the neighboring
pixels appears in prior densities which are the spatial transi-
tion densities. The accuracy of the particles, produced from
a proposal density, is confirmed by the transition and the ob-
servation densities.

For estimating mixing matrix, we use the MSE estimate.
Using (5), the MSE estimate of an element of A is written
such that

Akl /ak,lp(ak,l|A—(k,l)vYI:KaSl:L)dak,l (13)

/ak,lp<YI:K|SI:Laak,l>A—(k,l))dak,l

The likelihood of ay; in the second integral is a Gaussian
so the MSE estimate of a;; can be simply found by the max-
imum likelihood method. But in this study, we also find it
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Figure 1: Simulation results of texture images under 40 dB SNR. First column, mixed images; second column originals; third
column proposed; fourth column FPICA; fifth column Gibbs sampling.

using Monte Carlo integration to present a completely MC
technique for using its benefits. The approximate integral is
calculated such that

N A
k1 =7 Y ay (14)
V=

where samples ail are drawn from the density

P(yuklsiL,arn, A_y))-
The algorithm is presented in Table 1.

4. SIMULATION RESULTS

The mixed images, which are formed by using the source
images in the second column of Fig. 1, a linear mixing matrix
and additive Gaussian noise, are shown in first column of
Fig. 1. In this experiment, the SNR is 40 dB. The optimal
power of robust error function |.|” is taken as p = 1.8 using
an exhaustive search over a range of p values and the step
size of the steepest descent in (8) is set at = 0.8 after a few
experimental runs. The number of particles on the mixing
coefficients in Table 1, J is taken as 2. PSIR is checked at
every 500 iteration and if the final PSIR is less than the PSIR
of the previous one, the iterations are stopped.

In Table 4, Peak Signal-to-Interference Ratios (PSIR)
comparison results of FPICA [10], ICM, Gibbs sampling
(GS) and the proposed method are given. The outcomes of
the FPICA, GS and the proposed algorithms can be visually
assessed in Fig. 1. The result of the proposed method and
that of the Gibbs sampling are very close to each other. But
the Gibbs sampling takes a longer time to yield a result. In
Table 4, the execution times are compared under different
number of particles in the proposed method. The results in
Fig. 1 are obtained with 64 particles. The first row of the
Table 4 represents the Gibbs sampling values. The proposed

1 PSIR | one iteration T total

GS 24.57 0.2267 60000 | 226.72
ICM 22.77 0.0432 80 0.0575
FPICA | 22.28 0.0202 36 0.0121
2 23.29 0.8096 13900 | 188.65
4 23.85 0.8411 6220 87.19
8 23.89 0.8990 5450 81.66
16 24.09 1.0204 4810 81.80
32 24.29 1.2423 5100 | 105.59
64 24.56 1.7595 5700 | 167.15
128 24.62 2.6923 8900 | 399.35

Table 2: The PSIRs (dB) values according to number of par-
ticles /. Third column: duration of single iteration in sec-
onds; fourth column: number of iteration; fifth column: total
duration in minutes.

method is two to three times faster than Gibbs sampling for
small number of particles. If the number of particles is in-
creased, our algorithm slows down. In the case of 128 par-
ticles, the best results is obtained but the speed is less than
Gibbs sampling. Half a dB PSIR gain may be sacrificed to
improve the time of convergence. In this case, 16 particles
see to sufficient and one economizes 80 minutes in time.

The PSIR of the third source as a function of the itera-
tions are shown in Fig. 2 for 16, 32 and 64 particles. It is
seen from figure that the optimum number of particles can
be found between 32 and 64 particles. The variances of the
PSIRs calculated using last 500 iterations are also given in
Fig. 2. The variance of the PSIR can be used as a stopping
criterion, for example var(PSIR) < 0.1. We finally show the
evolution of posterior distribution from priors and the likeli-
hood in Fig. 3.
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16 particle. var(PSIR)=0.0169
32 particle. var(PSIR)=0.0035
64 particle. var(PSIR)=0.0128
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Figure 2: The PSIR of the third source as a function of the
iteration number. The var(PSIR), shown as thickness of the
curves, is computed using the last 500 PSIRs.
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Figure 3: Sampled pdfs of a pixel in source 1. The columns
correspond to the prior, the likelihood and the posterior pdfs.

5. CONCLUSION

In this study, we have introduced a new method for Bayesian
image source separation. This method minimizes the ex-
pected value of some robust error function, and it resorts to
particle methods to calculate stochastic integrals. For exam-
ple, iterative estimation by steepest descent has a stochastic
integral, which is conveniently solved by the particle method.
Both the convergence time of the algorithm and the resulting
PSIR figures increase monotonically with the number of par-
ticles. The SIR gain has diminishing returns beyond 64 par-
ticles. For large number of particles, the computation time
increases and beyond 64 particles it exceeds that of Gibbs.
Although the 64-particle operation point seems to be a good
compromise between complexity and performance, we be-
lieve that both the performance and the speed of the algo-
rithm can still be improved by choosing a more appropriate
proposal density and adjusting more cleverly the step size. To
implement a parallel sampling scheme by choosing a proper
prior density instead of Gibbs distribution, convergence time
can be reduced.

The proposed particle-based source separation method is
applicable to diverse fields. We plan to pursue a realistic
application problem, that of astrophysical image source sep-
aration [1].

In conclusion, the proposed method forms a niche
source-separation solution that stands between Gibbs sam-
pling and the parametric density fitting methods. Its advan-
tage consists in the fact that the pdf of pixels are first esti-

mated instead of directly the pixel themselves. Thus we work
with a richer set of information, that is, the a posteriori pdf of
pixels, and this can give rise to diverse estimators depending
on the cost function used.
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