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ABSTRACT
Agreement on a common time reference among the nodes is
one of the most critical issues in the successful operation of
the Wireless Sensor Networks (WSNs). In a previous paper
[1], the Maximum Likelihood Estimator (MLE) for the clock
offset of the silent nodes overhearing a two-way timing mes-
sage exchange between two nodes, assuming an exponential
link delay model, was obtained. This paper targets the deriva-
tion of Cramer-Rao Lower Bound (CRLB) for any unbiased
clock offset estimator of the silent nodes as a performance
threshold. The CRLB is shown to be inversely proportional
to the square of the number of observations, and hence the
variance of the MLE decreases very rapidly with the increase
in data points. However, it is proved that the MLE does not
achieve the CRLB and hence it is not efficient for small num-
ber of observations (although MLE has optimal properties for
a large number of observations, i.e., it tends to become unbi-
ased and attains CRLB). In addition, the CRLB for the clock
offset estimator of the active node, as estimated by the silent
node, is also derived and shown to be slightly better, but on a
similar scale as the CRLB for the clock offset of the inactive
node.

1. INTRODUCTION

The advances in fabrication technology have enabled the de-
velopment of tiny low power devices capable of performing
sensing, computing and communication assignments through
the equipped sensors, microprocessors and radio, respec-
tively. These tiny devices can be deployed at any place form-
ing a network of their own for observing and reporting a de-
sired phenomenon to the information sink. Wireless Sen-
sor Networks (WSNs) are a special kind of ad hoc networks,
composed of such devices, functioning collectively as a net-
work without any infrastructure. Sensor networks have their
own characteristics, such as very limited energy sources,
high density of node deployment and cheap and unreliable
sensor nodes. With these extra limiting factors for their op-
eration, sensor networks are designed to perform complex
tasks such as flood detection, monitoring of forest fire, eco-
logical and biological habitats, monitoring equipment and
ammunition, deep sea exploration, etc.

As in all distributed systems, time synchronization is an
important component of a sensor network. Time synchro-
nization in a computer network aims to provide a common
timescale for local clocks of nodes in the network. Since
all hardware clocks are imperfect, local clocks of nodes may
drift away from each other in time, so observed time or du-

rations of time intervals may differ for each node in the net-
work. However, for many application or networking proto-
cols, it is required that a common view of time exists and be
available to all or some of the nodes in the network at any
particular instant.

Different protocols have been proposed for achieving
unified notion of time across the WSN, most of which are
based on packet synchronization techniques. Such protocols
can be divided into two major approaches: sender-receiver
synchronization (such as [2, 3]) and receiver-receiver syn-
chronization (such as [4, 5]). Although the receiver-receiver
protocols exploit the idea of multiple nodes receiving a tim-
ing beacon from the reference node to save a lot of redundant
information flow, the same concept has not been utilized in
sender-receiver protocols communicating through a wireless
medium until recently [6]. When an active nodes synchro-
nizes with a reference node, the inactive nodes lying within
their common broadcast region can listen to this timing mes-
sage exchange and hence can synchronize their local clocks
with the reference node, without transmitting any informa-
tion by themselves. Since the major shortcoming of sender-
receiver protocols has always been the high number of tim-
ing message exchanges due to point-to-point nature of com-
munication, this scheme enables such protocols to compete
with the receiver-receiver protocols without being disadvan-
tageous with respect to the high communication cost.

The Maximum Likelihood Estimator (MLE) for the clock
offsets of these inactive or silent nodes under an exponential
link delay model has been obtained in [1]. In this paper, the
Cramer-Rao Lower Bound (CRLB) for any unbiased clock
offset estimator of the inactive nodes has been derived. It has
been shown that the CRLB is inversely proportional to the
square of the number of observations and hence the variance
of the MLE falls very rapidly with the number of message
exchanges. When compared with the CRLB for the clock
offset of the active node, it is evident that though slightly
worse, both of them perform on a similar scale. In addition,
it has been proved that the MLE does not achieve CRLB for
a small number of observations and hence no efficient esti-
mator (which attains CRLB) exists in this scenario.

2. MODELING ASSUMPTIONS

Fig. 1 illustrates a WSN with node r as the reference node.
When the network synchronization is started (e.g., after a
specific time at the reference node, or after sensing some
event), node r undergoes a standard two-way timing mes-
sage exchange procedure with an arbitrary node, say t. It
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Figure 1: Active node t exchanging timing messages with
reference node r with silent nodes like s, in their common
broadcast region, listening to the conversation.

sends a timing message with its current timestamp mr
1 to the

node t which records its arrival according to its own time as
mrt

2 . Similarly, the timestamps mt
1 and mtr

2 are recorded by
the nodes t and r, respectively. This process is illustated in
detail in Fig. 2 and repeated N times to improve the quality
of the the clock offset estimates, where the N is a function of
the target synchronization accuracy and the maximum cost
to be paid in the form of battery powers in the nodes.

Now notice in Fig. 1 that if the broadcast region of a
node is modeled as a hexagon (or a circle), then a silent node,
say s, lying in the common broadcast region of both nodes r
and t, can overhear the complete timing message exchange
between those two nodes. Without having to transmit any
timing packets itself, it can synchronize its clock offset with
the reference node through the procedure explained in [1].
As illustrated in Fig. 2, let mrs

2 and mts
2 be the timestamps

recorded at node s when it receives the timing messages mr
1

and mt
1, respectively. Also, the silent nodes like s have the

information mrt
2 since node t sends it back to node r with mt

1,
as required by the sender-receiver protocol.

There are two different kinds of message delays incurred
from the transmitter to the receiver analyzed in detail by
many researchers, who have divided the link delay uncertain-
ties in deterministic and nondeterministic components (e.g.,
[7]). In this paper, it is assumed that the deterministic part
of link delays is unknown but same for all the nodes receiv-
ing the messages from nodes r and t, because the nodes in
a WSN share the same hardware characteristics and hence
undergo similar transmission, reception, encoding, decoding
and byte alignment times, which are all deterministic. In ad-
dition, the propagation time of RF waveforms is less than 1
µs for ranges under 300 meters which implies that for nodes
present at short distances from each other, the difference in
the propagation time of the same message will be even less
than a few nano seconds. Finally, the nondeterministic delays
have been modeled as originating from an exponential distri-
bution with similar means. Some Probability Density Func-
tion (PDF) models, which have been proposed for random
network delays, are Gamma, exponential and Log-Normal,
but the exponential distribution has usually been the distribu-

Figure 2: A sender-receiver message exchange with silent
nodes also receiving the timing packets

tion of choice for random delays. A detailed discussion on
the justifications behind this can be found in [8, 9]. Based on
the above scenario, the related mathematical model can be
expressed as follows.

mrt
2 j = mr

1 j + γt +η + εrt
j ,

mrs
2 j = mr

1 j + γs +η + εrs
j ,

mts
2 j = mt

1 j− γt + γs +η + ε ts
j ,

where γt and γs are the clock offsets of the nodes t and s, re-
spectively, η is the deterministic portion of link delays, and
εrt

j , εrs
j and ε ts

j are independent and identically distributed
exponential random variables with similar means β . Let
A j = mrt

2 j −mr
1 j, B j = mrs

2 j −mr
1 j and C j = mts

2 j −mt
1 j, then

rearranging the above equations implies

A j = γt +η + εrt
j ,

B j = γs +η + εrs
j ,

C j = γs− γt +η + ε ts
j .

Based on the above model, the MLE was derived in [1]
as

η̂ = A(1) +C(1)−B(1)

γ̂s = 2B(1)−A(1)−C(1) (1)

γ̂t = B(1)−C(1). (2)

Next, we proceed to deriving the CRLB for the clock off-
set estimators.

3. CRAMER-RAO LOWER BOUND

Provided that some regularity conditions are satisfied, the
CRLB sets a lower bound on the variance of any unbiased
estimator. It is important in estimation theory because it
can provide a performance threshold against which the per-
formance of any unbiased estimator can be compared. The
CRLB theory also informs about the possibility of the ex-
istence of any unbiased estimator attaining that bound. In
addition, if an estimator attains the CRLB, it is the minimum
variance unbiased estimator. For the scenario studied here,
it is desirable to set the benchmark through the CRLB for
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any unbiased estimator of clock offset γ̂s, when a node like
s is silently listening to the timing cell exchange between a
reference and an active node around. On the other hand, if
the CRLB for γ̂t can be obtained, then it can be compared
with the CRLB for the clock offset in the general sender-
receiver protocol derived in [8] and consequently identify the
one with better achievable performance.

According to the CRLB theorem, if the regularity con-
ditions are satisfied, i.e., E[∂ lnL(θ)/∂θ ] = 0 for all θ , the
variance of any unbiased estimator θ̂ must satisfy the rela-
tionship

var(θ̂)≥ I−1 (θ) ,

where I(θ) is the quantity known as Fisher Information de-
fined as

I (θ) =−E
[

∂ 2 lnL(θ)
∂θ 2

]
= E

[(
∂ lnL(θ)

∂θ

)2
]

.

It is evident that the domain of the likelihood function
depends on both unknown parameters γt and γs due to which
the order of differentiation and integration in the expression
for regularity condition can not be interchanged. Therefore,
CRLB can not be found by employing the likelihood func-
tion. However, utilizing the fact that the MLE (or in fact
any estimator) is a random variable by itself, its Probability
Density Function (PDF) can be derived from the form of its
expression, where it is given as a function of data. Moreover,
obtaining this random variable from the likelihood function
is an equivalent problem to obtaining this random variable
from its own PDF. Similarly, deriving its CRLB from the
likelihood function is an equivalent problem to deriving its
CRLB from its own PDF. In light of this, the CRLB for the
clock offsets can be derived as follows.

Starting with γ̂s, note that from (1),

γ̂s = 2B(1)−A(1)−C(1)

= 2
(

η + γs + εrs
(1)

)
−

(
η + γt + εrt

(1)

)

−
(

η + γs− γt + ε ts
(1)

)

= γs +2εrs
(1)− εrt

(1)− ε ts
(1). (3)

It is simple to show that the PDF of the first order statis-
tics εrt

(1), εrs
(1) and ε ts

(1) is given as

pε(1)

(
ε(1)

)
= N

[
1−Fε j

(
ε(1)

)]N−1
. fε j

(
ε(1)

)

=
N
β

e−
N
β ε(1)u

[
ε(1)

]
, (4)

where fε j and Fε j are the PDF and CDF of the exponential
random variables ε j, respectively. Hence, the PDFs of the
first order statistics εrt

(1), εrs
(1) and ε ts

(1) are also exponential
with mean β/N.

Next, the mean and the variance, respectively, of γ̂s can
be written as

E [γ̂s] = E
[
2B(1)−A(1)−C(1)

]

= γs +
2β
N
− β

N
− β

N
= γs,

and

var(γ̂s) = E
[
(γ̂s− γs)

2
]

= E
[(

2εrs
(1)− εrt

(1)− ε ts
(1)

)2
]

=
6β 2

N2 ,

where the relation (4) above has been employed. Now the
PDF of γ̂s can be derived as follows. Note that (3) can be
expressed as

γ̂s− γs = 2εrs
(1)−

(
εrt
(1) + ε ts

(1)

)
= x− y,

where x = 2εrs
(1) and y = εrt

(1) + ε ts
(1) for simplicity. From (4),

it is evident that

pX (x) =
N
2β

e−
N
2β xu [x] . (5)

For finding the PDF of y, note that εrt
(1) and ε ts

(1) are the
first order statistics of independent data sets and hence these
are also independent with the same distribution as (4), so

pY (y) =
∫ ∞

−∞
pεrt

(1)

(
y− ε ts

(1)

)
. pεts

(1)

(
ε ts
(1)

)
.

u
[
y− ε ts

(1)

]
. u

[
ε ts
(1)

]
dε ts

(1)

=
N2

β 2

∫ y

0
e−

N
β

(
y−εts

(1)

)
. e−

N
β εts

(1) dε ts
(1)

=
N2

β 2 y e−
N
β yu [y] , (6)

which is a Gamma distribution with scale parameter β/N
and shape parameter 2. Clearly, γ̂s− γs is actually the differ-
ence between an exponential random variable and a Gamma
random variable, both of which are independent and positive
valued. Therefore, the domain of x− y is (−∞,∞) and the
PDF of γ̂s can be derived using (5) and (6) as follows.

For γ̂s ≤ γs,

pγ̂s (γ̂s) =
N3

2β 3

∫ ∞

−∞
e−

N
2β (γ̂s−γs+y)ye−

N
β y

.

u [γ̂s− γs + y]u [y]dh

=
N3

2β 3 e−
N
2β (γ̂s−γs)

∫ ∞

−(γ̂s−γs)
ye−

3N
2β ydh

=
N3

2β 3 e−
N
2β (γ̂s−γs)

[
e

3N
2β (γ̂s−γs)

(
−2β (γ̂s− γs)

3N

+
4β 2

9N2

)]

=
2N
9β

e
N
β (γ̂s−γs)− N2

3β 2 (γ̂s− γs)e
N
β (γ̂s−γs)

=
N
3β

[
2
3
− N

β
(γ̂s− γs)

]
e

N
β (γ̂s−γs).
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And for γ̂s ≥ γs,

pγ̂s (γ̂s) =
N3

2β 3

∫ ∞

−∞
e−

N
2β (γ̂s−γs+y)ye−

N
β y

.

u [y]u [γ̂s− γs + y]dh

=
N3

2β 3 e−
N
2β (γ̂s−γs)

∫ ∞

0
ye−

3N
2β ydh

=
N3

2β 3 e−
N
2β (γ̂s−γs)

[
4β 2

9N2

]

=
2N
9β

e−
N
2β (γ̂s−γs).

Consequently, the PDF pγ̂s(γ̂s) is given by

pγ̂s (γ̂s) =





N
3β

[
2
3 − N

β (γ̂s− γs)
]

e
N
β (γ̂s−γs) γ̂s ≤ γs

2N
9β e−

N
2β (γ̂s−γs) γ̂s ≥ γs

.

To confirm if it is indeed a valid PDF, note that

2N
9β

∫ 0

−∞
e

N
β (γ̂s−γs)d (γ̂s− γs) =

2
9
,

− N2

3β 2

∫ 0

−∞
(γ̂s− γs)e

N
β (γ̂s−γs)d (γ̂s− γs) =

1
3
,

2N
9β

∫ ∞

0
e−

N
2β (γ̂s−γs)d (γ̂s− γs) =

4
9
,

which sum up to 1. Finally, to verify its unbiasedness, note
that

E [γ̂s] =
N
3β

∫ γs

−∞
γ̂s

[
2
3
− N

β
(γ̂s− γs)

]
e

N
β (γ̂s−γs)dγ̂s

+
2N
9β

∫ ∞

γs

γ̂se
− N

2β (γ̂s−γs)dγ̂s

=
(
− N

3β
γs

2 +
2
3

γs− 2β
3N

+
2
9

γs +
N
3β

γs
2− 1

3
γs

−2β
9N

)
+

(
4
9

γs +
8β
9N

)
= γs.

Now note that the PDF pγ̂s(γ̂s) is not differentiable at the
point γ̂s = γs, but it is continuous at this point, which implies
that its domain is independent of γs. Differentiating ln pγ̂s (γ̂s)
with respect to γs yields

∂ ln pγ̂s (γ̂s)
∂γs

=





N
β

[
2
3−N

β (γ̂s−γs)
] − N

β γ̂s ≤ γs

N
2β γ̂s ≥ γs

. (7)

To check if the regularity conditions are satisfied, the ex-

pected value of ∂ ln pγ̂s(γ̂s)/∂γs is

E
[

∂ ln pγ̂s (γ̂s)
∂γs

]
=

∫ γs

−∞

N
β

N
3β

e
N
β (γ̂s−γs)dγ̂s

−
∫ γs

−∞

N
β

N
3β

[
2
3
− N

β
(γ̂s− γs)

]
e

N
β (γ̂s−γs)dγ̂s

+
∫ ∞

γs

N
2β

2N
9β

e−
N
2β (γ̂s−γs)dγ̂s

=
N
3β

∫ γs

−∞

[
N
3β

+
N2 (γ̂s− γs)

β 2

]
e

N
β (γ̂s−γs)dγ̂s

+
N2

9β 2

∫ ∞

γs

e−
N
2β (γ̂s−γs)dγ̂s =−2N

9β
+

2N
β

= 0.

Since the clock offset estimator is unbiased and the reg-
ularity conditions are satisfied, the CRLB exists in this case.
Differentiating (7) again with respect to γs,

∂ 2 ln pγ̂s (γ̂s)
∂γs2 =

{
−N2

β 2

[
2
3 − N

β (γ̂s− γs)
]−2

γ̂s ≤ γs

0 γ̂s ≥ γs

.

Taking the expectation on both sides,

E

[
∂ 2 ln pγ̂s (γ̂s)

∂γs2

]
=− N3

3β 3

∫ γs

−∞

[
2
3
− N

β
(γ̂s− γs)

]−1

e
N
β (γ̂s−γs)dγ̂s .

Let z = N/β (γ̂s− γs)−2/3, which implies

E

[
∂ 2 ln pγ̂s (γ̂s)

∂γs2

]
=

N2

3β 2 e2/3
∫ −2/3

−∞
z−1ezdz

=
N2

3β 2 e2/3 Ei(−2/3) (8)

= −0.258
N2

β 2 ,

where Ei(a) is the well known Exponential Integral Function
defined as

Ei(a) =

{ −∫ ∞
−a z−1e−z dz =

∫ a
−∞ z−1ez dz, a < 0

− lim
δ+0

[∫−δ
−a +

∫ ∞
δ

]
z−1e−z dz, a > 0 .

In the relation (8) above, the value of Ei(−2/3) has been
computed as−0.398 and e2/3 = 1.948. Therefore, CRLB for
γs is given by the expression

CRLB(γ̂s) =
3.869β 2

N2 .

Notice that the variance of γ̂s is inversely proportional to
the square of the number of data points N2 and hence de-
creases very rapidly as the nodes exchange more and more
messages. Continuing with the CRLB theory, observe from
(7) that

∂ ln pγ̂s (γ̂s)
∂γs

6= I (γs)(γ̂s− γs) ,

=
N2

3.866β 2

(
2B(1)−A(1)−C(1)− γs

)
.
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Consequently, since the MLE does not satisfy the above
relation, it is not efficient (i.e., it does not attain the CRLB)
for small N, although it attains this bound for large N due
to its optimal properties for large number of observations.
Moreover, an efficient estimator for the scenario targeted
here does not exist due to the rule: if an efficient estimator
exists, the maximum likelihood procedure will produce it.

Turning out attention towards finding the CRLB of γ̂t ,
again the likelihood function can not be used in it, in view of
the fact that the domain of the likelihood function depends
on γt . Instead, employing the PDF of γ̂t using (2),

γ̂t = B(1)−C(1) = η + γs + εrs
(1)−

(
η + γs− γt + ε ts

(1)

)
,

= γt + εrs
(1)− ε ts

(1).

The mean and variance of γ̂t , are given respectively by

E [γ̂t ] = E
[
γt + εrs

(1)− ε ts
(1)

]
= γt +

β
N
− β

N
= γt ,

E
[
(γ̂t − γt)

2
]

= E
[(

εrs
(1)− ε ts

(1)

)2
]

=
2β 2

N2 ,

which confirms the unbiasedness of γ̂t . Utilizing the fact
that the difference between two exponential random vari-
ables with mean β/N is a Laplacian random variable with
mean 0, pγ̂t (γt) can be expressed as

pγ̂t (γt) =





N
2β e

N
β (γ̂t−γt ) γ̂t ≤ γt

N
2β e−

N
β (γ̂t−γt ) γ̂t ≥ γt

.

Notice that the PDF is symmetric around γt and hence
E[(∂ ln pγ̂t (γt)/∂γt)] = 0. Differentiating both sides with re-
spect to γt and taking the expectation of its square,

E

[(
∂ ln pγ̂t (γt)

∂γt

)2
]

=
N2

β 2 ,

and hence the CRLB for γ̂t can be expressed as

CRLB(γ̂t) =
β 2

N2 ,

where again the variance is inversely proportional to N2. This
is the case due to the positive or one-sided nature of the link
delays, assumed from an exponential distribution here.

Observe that due to the dependance of the CRLB on N2

instead of N, the variance of the MLE of both γs and γt
rapidly decreases with the number of observations. This is
due to the optimal properties of the MLE for a large num-
ber of observations, i.e., when N increases, the MLE tends to
become unbiased and its variance reaches the CRLB.

4. CONCLUSIONS

For a silent node overhearing a general sender-receiver
two-way timing message exchange between two nodes, the
CRLB has been derived for the unbiased estimator of its
clock offset. The CRLB is shown to be inversely proportional
to the square of the number of observations and hence the
variance of the MLE quickly falls with the increase in data

points, which in addition to its zero cost, makes it very attrac-
tive for synchronizing with the reference node. As a future
work, using a higher order model, involving the clock skew,
for the relationship between the clocks of inactive nodes and
the reference node will increase the estimation accuracy and
keep the network synchronized for a longer period of time.
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