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Université catholique de Louvain

B-1348 - Louvain-la-Neuve, Belgium
email: jean-pierre.antoine@uclouvain.be

ABSTRACT

We study the time-scale representation provided by the Mor-
let wavelet transform for characterizing NMR signals. From
an analytical analysis and simulations, we conclude that the
wavelet shows a satisfactory performance even when a base-
line, an additive Gaussian noise or a solvent are present in
the signals. It can also cope with non-Lorentzian lineshapes
which commonly occur because of the inhomogeneous distri-
bution of molecules in a substance. These results mean that
the Morlet wavelet transform is a potential tool to quantify
in vivo NMR signals.

1. INTRODUCTION

A nuclear magnetic resonance (NMR) signal is acquired
when the nuclei in a substance are excited by a radio fre-
quency pulse, and re-radiated. This results in an exponential
decaying sine wave, which has a so-called Lorentzian line-
shape in the frequency domain. The frequency of the peak
of the signal depends upon the nucleus and is therefore typi-
cal to each substance. The amplitude in the time domain, i.e.
the area in the frequency domain, depends on the amount of
those nuclei, which can then relate to the concentration of the
substance [1]. Therefore, a good quantification technique is
essential for the interpretation of the NMR signals.

For this purpose, a number of techniques have been pro-
posed, to be used both in time or in frequency domains (see
[2, 3]). There also exists the wavelet transform, which yields
a time-scale representation. Analyzing in the two domains
simultaneously makes it more efficient than the Fourier trans-
form, which gives only spectral information. In addition, a
small perturbation of a signal which may occur during the
data acquisition will result only in a small, local modifica-
tion of the wavelet transform.

Among several types of wavelet transforms, the continu-
ous wavelet transform technique [4, 5] can estimate the fre-
quency and amplitude of the spectral line directly from phase
and modulus of the wavelet transform and no linear model is
needed as in the techniques based on the discrete wavelet
transform [6]. The present paper will exploit that property of
the continuous wavelet transform, with the Morlet wavelet
in particular, and focus on problems such as the baseline, the
solvent and non-Lorentzian lineshapes, which commonly ap-
pear in NMR spectroscopy.

2. METHODOLOGY

In order to characterize a signal, the wavelet-based tech-
niques first detect the frequencies in NMR signals and then
estimate the amplitude at each detected frequency.

The wavelet transform of a signal s(t) with respect to a
mother wavelet g(t) is

S(τ,a) =
1

2π

√
a

∫

S(ω)G∗(aω)eiωτ dω, (1)

where S(ω) is the Fourier transform of the signal, a > 0 is
a dilation parameter, τ ∈ ℜ is a translation parameter and
G∗(ω) is the complex conjugate of the Fourier transform of
g(t). Given a Lorentzian signal s(t), namely

s(t) = Ae−Dtei(ωst+φ)

S(ω) = 2πAeiφ δ (ω − (ωs +Di)), (2)

where D and φ are the damping factor and the phase of the
signal, the Morlet wavelet transform of s(t) is

S(τ,a) =
√

aAeiφ e−Dτ eiωsτ G∗
M(a(ωs +Di))

= s(τ)G∗
M(a(ωs +Di)), (3)

where

gM(t) =
1

2πσ
e
− 1

2σ2 t2

eiω0t + ε(t)

GM(ω) = e−
σ2

2 (ω−ω0)2

+ ε∗(ω), (4)

is the Morlet wavelet whose frequency and width are de-
noted by ω0 and σ . The correction term ε is negligible when
σω0 > 5.5, and will be omitted henceforth. It can be seen

that the modulus of S(τ,a) is maximum, i.e. ∂
∂a

S(τ,a) → 0,

when ∂
∂a

G → 0. Since a ∈ ℜ and with the assumption that

ωs ≫ D, the maximum can be found at the scale ar = ω0/ωs,
which then gives

G∗(ar(ωs +Di)) = exp

(

σarD√
2

)2

, (5)

and consequently

Sar(τ) =
√

ar exp

(

σarD√
2

)2

s(τ), (6)

is also identical to the signal s(t) scaled by a coefficient de-
pending on a still-unknown D. Next, consider the phase of
the Morlet wavelet transform along the scale ar,

∠Sar(τ) = ωsτ +φ

ωs =
∂

∂τ
∠Sar(τ). (7)
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Figure 1: (a) Phase of the wavelet transform of g(t) with ωs

=32 and 64 rad/s and (b) its instantaneous frequencies. Note:

σ = 1, ω0 = 5, Fs=256, l = 1024.

That is, the instantaneous frequency on the scale ar of the
Morlet transform is ωs. By Eq. (7), the phase φ can also be
recovered, if needed. This method is also applicable to an
n-frequency signal if its frequencies are sufficiently far away
from each other that G∗(aω) can treat each spectral line inde-
pendently [7]. As illustrated in Fig. 1 (b), the instantaneous
frequency of the wavelet transform of a signal with ωs = 32
and 64 rad/s converges to the two frequencies of the signal
at the scale ω0/32 and ω0/64. It can also be seen that Eq.
(7) works not only on the scale ar = ω0/ωs but also for a
wide range of a. Whenever two frequencies are very close
to each other (this also depends on the sampling frequency
and the relative amplitudes of both frequencies), increasing
the frequency of the Morlet function ω0 can better localize
and distinguish the overlapping frequencies. However, ω0

should not be too high that the transform becomes noisy and
unreliable.

Next, consider the modulus of the wavelet transform
along ar,

|Sar(τ)| =
√

ar exp

(

σarD√
2

)2

|s(τ)|

ln |Sar(τ)| =
1

2
lna+

(

σarD√
2

)2

+ lnA−Dτ.
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Figure 2: Derived damping factor and amplitude of a signal

with D=1.5, A=2, and ωs = 32 rad/s, at ar. Same parameters

as in Fig. 1.

That is,

D = − ∂

∂τ
ln |Sar(τ)|. (8)

Knowing D can now lead to the estimation of the ampli-
tude resonance A of the signal, i.e.

A = |s(t)|eDt . (9)

The Morlet wavelet is the most frequently used in prac-
tical because of its simple numerical implementation and the
vanishing of the third-order differentiation of its phase can
also simplify the computation [5]. In addition, there is no
need to compute the wavelet transform at all scales. A rough
approximation of the scale ar may be read from the Fourier
transform of the signal, or derived from a priori knowledge.
Then, a more precise value of ar can be calculated iteratively
using the ridge extraction in [5]. If the signal also includes
noise, the authors of [4] suggested averaging the instanta-
neous frequency, i.e.

Ω̄a =
1

T

∫ τ0+T

τ0

Ωa(τ)dτ,

where Ωa(τ) = ∂
∂τ ∠Sar(τ). Fig. 3 shows that the averaging

gives a more stable Ω as it creates a wider range of steady
points along a. Note that Eq. (6) differs from the literature
which approximates the wavelet transform by the Taylor se-
ries and omits the term D.

2.1 Apodization

In general, using the Fourier transform to analyze a signal
can produce erroneous results due to the discrete implemen-
tation, e.g. aliasing, picket-fence effect, etc. Basically, this
means that the sampling frequency (Fs) and the length of the
signal (l) need to be carefully selected. The problem be-
comes more severe when two frequencies are close together.
To solve this, the frequency resolution can be increased by
zero padding the signal. However, this may introduce a ring-
ing effect, which is another consequence of a finite data set.
Techniques such as decay padding, data-tapering window
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Figure 3: The instantaneous frequency of a signal of 32 rad/s

with SNR=10 (additive complex Gaussian noise with σn =
0.079) derived by the Morlet wavelet at t = 4.7 s. Note: σ=1,

ω0=5, Fs=800, l=1024.

or wrap-around can be applied to reduce this boundary ef-
fect [8]. In NMR spectroscopy, the Gaussian or Lorentzian
window is commonly used and such windowing process is
known as apodization. For the continuous wavelet transform,
the boundary effect increases linearly with a, which can be
seen as a cone in Fig. 1 (a) and Fig. 2. However, by using Ω
outside this cone, there is no need to apply a tapering window
to the signal.

2.2 Baseline

The baseline corresponds to underlying broad resonances of
large molecules, known as macromolecules, and lipids. It
can affect the characterization of an NMR signal when the
Fourier transform is used. Here, the baseline is modelled by
cubic splines to study the performance of the wavelet trans-
form. Fig. 4 shows that the baseline has no effect with the
derived frequency or amplitude. In fact, the baseline has its
effect only at the left edge of the transform. Although splines
are used to simplify the problem, if the real baseline satisfies
the assumption that it converges much faster than the actual
signals, using the wavelet transform to derive the frequency
and amplitude of an NMR signal should still work without
removing the baseline beforehand.

2.3 Solvent

The Morlet wavelet transform sees the signal at each fre-
quency individually, therefore it can work well even if the
amplitude at various frequencies are hugely different, which
normally occurs when there is a peak of solvent in the sig-
nal. As an example, the Morlet wavelet transform has been
applied to a signal

s(t) = 100e−8.5tei32t + e−1.5tei60t + e−0.5tei90t

+e−tei120t + e−2tei150t ,

as seen in Fig. 5. It is a signal with an amplitude of 100
at 32 rad/s and 1 elsewhere. The high amplitude can affect
other frequencies if they are close to each other. Using the
aforementioned method, the amplitude of 1 can be extracted
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Figure 4: (a) The Fourier transform of a 32-rad/s signal with

baseline. Its instantaneous frequency is in (b), compared to

the dotted line of ω0/a. Parameters used are the same as in

Fig. 1. The baseline is modelled by a cubic spline.

as 0.98, 0.91, 0.99 and 0.97 respectively. The error ranges
within 1.2-8.9%, without any preprocessing.

3. NON-LORENTZIAN LINESHAPE

The Lorentzian lineshape assumes that the homogeneous
lifetime broadening and pure dephasing are equally con-
tributed from each individual molecule. However, molecules
have different relaxation rates in general. In addition, there
are other sources, such as the inhomogeneous distribution of
the molecules, Doppler shifts or site differences of molecules
in the solution, that can cause the inhomogeneous broaden-
ing. These effects are typically modelled by a Gaussian line-
shape [9]. Since the inhomogeneous broadening is often sig-
nificantly larger than the lifetime broadening, the Gaussian
lineshape is often dominant.

3.1 Gaussian and Voigt lineshapes

Let us define a pure Gaussian function with a frequency at
ωs as

sG(t) = Ae−γt2

eiωst , (10)
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Figure 5: The Fourier transform of a signal with different

amplitudes and the spectrum extracted by the Morlet wavelet.

where γ is a Gaussian damping factor. By solving the Gaus-
sian integral, its Morlet wavelet transform at the scale ar =
ω0/ωs is then

SG,ar(τ) = k1Ae−k2τ2

eiωsτ , (11)

where

k1 =

√

ar

2π(2γσ2a2
r +1)

k2 =
γ

2γσ2a2
r +1

,

which is also a Gaussian function at the frequency ωs. This
new Gaussian function has its instantaneous frequency equal
to ωs. Therefore, as in the processing of the Lorentzian line-
shape, A and γ can be obtained as follows:

1. Find ωs = ∂
∂τ ∠SG,ar(τ).

2. Find γ from ∂ 2

∂τ2 ln |SG,ar(τ)|.
3. Find A from the calculated ωs and γ .

Note that the scale ar = ω0/ωs does not give exactly the
maximum modulus of the wavelet transform, but it is accept-
able on the condition that a ∈ ℜ and ωs ≫ D.

On the other hand, if the lineshape is intermediate be-
tween a Gaussian and a Lorentzian form, the spectrum can
be fitted to a convolution of the two functions. Such line-
shape is known as a Voigt profile. It can be used to resolve
the lineshape into homogeneous (Lorentzian) and inhomo-
geneous (Gaussian) components. The Morlet wavelet trans-
form at the scale ar = ω0/ωs of a Voigt lineshape

sV (t) = Ae−γt2

e−Dteiωst , (12)

is

SV,ar(τ) = k3Ae−k2(τ+k4)2

eiωsτ , (13)

where

k3 = k1e
−D2

4γ

k4 =
D

2γ
.
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Figure 6: (a) The comparison of the instantaneous frequency

of the Morlet wavelet transform of a signal of a frequency

60 rad/s with different lineshapes, e.g. Lorentzian s(t) =

e−tei60t , Gaussian s(t) = e−t2
ei60t , Voigt s(t) = e−te−t2

ei60t

and Kubo s(t) = e−0.25(e−t−1+t)ei60t at t= 4.7 s. The modulus

of the Morlet wavelet transform of each line at ar = ω0/60 is

in (b). Note: σ=1, ω0=15, Fs=800, l=1024.

That is, at the scale ar, the Morlet wavelet transform of
the Voigt lineshape is also a Gaussian function with the same
width as that of the Gaussian lineshape, but shifted in time
and amplitude modified. Its instantaneous frequency is also
equal to ωs along the scale ar, as shown in Fig. 6 (a). In
addition, the second derivative of the modulus of the wavelet
transform can be used to describe the second-order broaden-
ing of the lineshape, i.e. γ , be it Gaussian or Voigt, by

γ = − 0.5
(

∂ 2

∂τ2 ln |SG,ar(τ)|
)−1

+σ2a2
r

. (14)

This is confirmed by the convergence to the same value for
both lineshapes in Fig. 7 (a).
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Figure 7: (a) The Gaussian damping factor derived from Eq.

(14) and (b) ∂
∂τ ln |SG,ar(τ)| with respect to Kubo’s γ .

3.2 Kubo’s lineshape

The interaction between homogeneous and inhomogeneous
broadenings of the lineshape depends on the time scale. For
example, if the relaxation time (T2) is much longer than any
effects modulating the energy of a molecule, the lineshape
will approach the homogeneous lineshape. On the contrary,
if T2 is short, the lineshape is likely to be Gaussian. In [10],
a so-called Gaussian-Markovian modulation, namely

sK(t) = Ae
− ς2

γ2 (e−γt−1+γt)
eiωst , (15)

is used to account for this time scale. The parameter γ is
inversely proportional to T2 and ς is the amplitude of the
solvent-induced fluctuations in the frequency. If α = γ/ς ≪
1, the lineshape becomes Gaussian, whereas α ≫ 1 leads
to Lorentzian. Solving Eq. (15) seems to be complicated,
though may be possible. However, the Morlet’s instanta-
neous frequency at the scale ar = ω0/ωs is still capable of
deriving the ωs, even better than the Gaussian lineshape, as
shown in Fig. 6 (a). The damping parameters can also be

derived by a linear relation with ∂
∂τ ln |SG,ar(τ)|, as seen in

Fig. 7 (b), whereas α relates directly to ∂ 2

∂τ2 ln |SG,ar(τ)|.

4. CONCLUSION

This paper presents an analytical analysis of the Morlet
wavelet transform to quantify NMR signals. The wavelet
works well with Lorentzian, Gaussian, Voigt and Kubo line-
shapes. It is also efficient when baseline, noise or solvent are
present in the signal. The method works well with a signal
whose frequencies are sufficiently far from each other. In-
creasing the frequency of the Morlet wavelet can also help
resolving the frequency components that are close to each
other. However, for use in in vivo signals which will be
acquired by our partners at UCBL (Lyon) and EPFL (Lau-
sanne), the method needs further development to cope with
severely overlapping frequencies.
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