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ABSTRACT 
This work presents a low cost fast convergence adaptive 
algorithm for autoregressive (AR) input signals. It basically 
consists on an NLMS adaptive algorithm coupled with a 
linear adaptive predictor. Mean weight theoretical analysis 
shows that this adaptive structure, under AR conditions, 
provides a performance quite similar to the well known Af-
fine Projection algorithm. Theoretical results are supported 
by Monte Carlo simulations showing a very good matching 
for considerably correlated signals. This adaptive algorithm 
could be a good choice in control and filtering applications 
that require high adaptation speed and low computational 
cost. 

1. INTRODUCTION 

The Normalized Least Mean Square (NLMS) is a widely 
used adaptive algorithm in practical applications due to its 
robustness and ease of implementation. However, its major 
drawback is its slow convergence speed for correlated input 
signals. The Affine Projection (AP) algorithm was originally 
proposed by Ozeki and Umeda in 1984 [1] as a solution for 
this problem. The AP algorithm updates the adaptive filter 
weights in directions that are orthogonal to the last P input 
vectors. It has been shown that the AP algorithm converges 
much faster than NLMS for correlated inputs. The price for 
such performance is a computational complexity of 
2NP+kinvP2 multiply and accumulate operations, where N is 
the number of adaptive coefficients, P is the AP order and 
kinv is about 7 [2]. As a result, despite its good properties, 
real-time applications of the AP algorithm in multichannel 
and long-filter problems are still restricted. 

Different approaches have been used to improve the 
convergence speed of adaptive filters while keeping a low 
computational cost. Fast and efficient versions of the AP 
algorithm have been proposed. However, such fast algo-
rithms have a higher complexity than the NLMS and suffer 
from instability problems associated with the matrix inver-
sion process [2],[3]. In [4], Mboup et al. presented an adap-
tive structure where a linear adaptive predictor filters the 
input and error signals used in the LMS update equation. The 
coupled adaptive filter showed faster speed when compared 
with the conventional LMS. Afterwards, [5] presented a simi-
lar structure where the predictor is replaced by a copy of the 

adaptive filter coefficients. As a result, this algorithm pre-
sents a faster speed with a small additional complexity (50% 
greater). However such algorithms are capable of fastening 
the LMS velocity, the desired AP convergence characteristics 
and NLMS low cost are not simultaneously obtained. 

This work demonstrates, through analytical and simula-
tion results, that for medium to high correlated autoregressive 
(AR) input signals the performance of the AP algorithm can 
be achieved by using a very simple structure with a very low 
extra computational complexity when compared to the con-
ventional NLMS. This algorithm consists on an adaptive 
linear predictor that decorrelates the input regressor of the 
NLMS adaptive filter. 

A mean weight theoretical analysis is provided in order 
to show that this algorithm has approximately the same first 
order behaviour as the AP algorithm. Simulation results cor-
roborate the analysis providing the evidence that both algo-
rithms also present the same excess mean square error. The 
main limitation of this algorithm is the use of very high cor-
related input signals. In such situation the algorithm may not 
converge. Finally, simulations with a real acoustic signal 
show its usefulness in real conditions. 

2. INPUT SIGNAL MODEL 

In this work the input signal u(n) is assumed to be a zero-
mean wide sense stationary AR process of order P. It can be 
described by 

 ( ) ( ) ( )
1

P

i
i

u n a u n i z n
=

= − +∑  (1) 

where ai are the AR coefficients and z(n) is a wide sense sta-
tionary white process with variance rz. A set of N consecutive 
samples of (1) can be described by the following matrix nota-
tion 
 ( ) ( ) ( )n n n= +u U a z  (2) 
where u(n)=[u(n) u(n-1) ... u(n-N+1)]T, a=[a1 a2 … aP]T, 
z(n)=[z(n) z(n-1) ... z(n-N+1)]T, and U(n)=[u(n-1) u(n-2) … 
u(n-P)]. 

3. THE AP ADAPTIVE ALGORITHM 

The weight error update equation of the unit step-size AP 
algorithm (resulting in a scalar error) subjected to an AR 
input can be written as [6] 
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Figure 1 – Block diagram of the proposed algorithm. 

 
Figure 2 – Block diagram of the linear predictor. 
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where vAP(n)=wAP(n)-wo, wAP(n)=[wAP0 wAP1 ... wAPN-1]T is the 
adaptive coefficient vector, wo is the plant to be identified, 
eAP(n)=-vAP

T(n)u(n)+r(n), r(n) is the additive noise, 
 ( ) ( ) ( ) ( )APn n n n= −u U aΦ  (4) 
and aAP(n) is the least squares estimate of the AR coeffi-
cients: 
 ( ) ( ) ( ) ( ) ( )1T T

AP n n n n n
−

 =  a U U U u  (5) 
where UT(n)U(n) is assumed of rank P; and aAP(n)=[aAP1(n) 
aAP2(n) … aAPP(n)]T. 

It was demonstrated in [6] that the mean weight error be-
haviour of the AP can be analytically described by: 

 ( ){ } ( ){ }AP AP
11 1

2
E n E n

N P
 + ≅ − − − 

v v  (6) 

where E{⋅} corresponds to expectation. 

4. NLMS PLUS A LINEAR PREDICTOR 

The proposed adaptive structure consists on including an 
adaptive linear predictor (S) to decorrelate the NLMS input 
signal. This structure is shown in Fig.1. Fig.2 details the 
structure of the considered predictor S. 

From the block diagram showed in Fig. 1, the proposed 
weight error update equation is given by 

 ( ) ( ) ( )
( ) ( ) ( )1 f

T
f f

n
n n e n

n n
µ+ = +

u
v v

u u
 (7) 

where 
 ( ) ( ) ( ) ( )Te n n n r n= − +v u  (8) 
v(n)=w(n)-wo, uf (n)=[uf (n) uf (n-1) ... uf (n-N+1)]T and uf (n) 
is the output of the adaptive predictor at iteration n. 

Assuming an AR input, an LMS based update strategy, a 
sufficiently small step-size and enough time for achieving 
steady-state, the predictor coefficients a(n) tend to the AR 
parameters a, in such way that limn→∞E{a(n)}≅ a [7]. In such 
case uf (n) ≅ z(n). 

5. MEAN WEIGHT BEHAVIOUR 

This section presents a theoretical analysis of the mean 
weight behaviour of the proposed algorithm in order to 
demonstrate its similarity with the analytical model of the 
AP algorithm presented in [6]. The study of the statistical 
properties of the weight vector requires simplifications in 
order to make the problem mathematically tractable. These 
simplifications are well established in the adaptive filter 
analysis area and, due to their complexity and length, proofs 
will be presented or referenced as needed. 

For simplicity we assume that there is enough time for 
the adaptive predictor to achieve steady-state condition in 
order that uf (n) ≅ z(n) [7]. Considering this, using (8) in (7) 
and taking the expectation we obtain 

 
( ){ } ( ){ }

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

1

     
T

T T

E n E n

r n n n n n
E E

n n n n
µ µ

+ =

      + −   
      

v v

z u v z
z z z z

 (9) 

Assuming independence between the input signal and 
the additive noise [7] we have 

 
( ) ( )
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z z
0
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Using (2) and (10) in (9) 
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Assuming a large number of coefficients we can use the 
averaging principle [8], and approximate (11) by 
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 (12) 

In appendix A, assuming v(n) has a Gaussian probability 
density function [9], it is demonstrated that 
 ( ) ( ) ( ){ }T TE n n n =a U v z 0  (13) 

Using (13) in (12) we obtain 

 
( ){ } ( ){ }

( ) ( ){ } ( ) ( ) ( ){ }1

1

T T

E n E n

E n n E n n nµ
−

+ ≅

 −  

v v

z z z z v
 (14) 

The second expected value on the right hand side of (14) 
was already evaluated in [10]. Differently of [10], in this case 
zT(n)z(n) has truly a chi-square distribution with N degrees of 
freedom since z(n) is white. As a result: 
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The last expectation in (14) can be obtained through the 
use of the independence theory [7] 
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 Using (15) and (16) in (14) we finally obtain a deter-
ministic recursive equation for describing the mean weight 
behaviour of the new algorithm: 

 ( ){ } ( ){ }1 1
2

E n E n
N
µ + ≅ − − 

v v  (17) 

6. COUPLED NLMS VERSUS AP ALGORITHMS 

The similarity between the AP and the coupled NLMS algo-
rithms can be verified comparing Eq. (17) with the AP mean 
weight model, given in Eq. (6): 
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Eq. (18) indicates that, for the same initialization, both 
algorithms must show approximately the same mean weight 
behaviour if the step-size of the proposed algorithm is 
equated to: 

 ( )
( )

2
2

N
N P

µ
−

=
− −

 (19) 

for N>>P then µ≅1. 

7. SIMULATIONS 

This section presents comparisons among the proposed algo-
rithm, the AP and the conventional NLMS algorithms. Three 
examples are provided. The first two are didactical situations 
where the input signals are generated by first and second 
order AR processes. In both cases, the plant impulse re-
sponse is a 100 tap normalized Hanning window (woTwo=1). 
In the third example we consider a real acoustic impulse 
response and an input signal (certainly not corresponding to 
an AR process) sampled from a real IBM-PC cooler. The 
common design parameters for all simulations are: 5000 
predictor iterations before running the adaptive algorithms; 
predictor step-size µP=0.01; w(0)=0; regularization factor 
ε=10-4 [11]; additive noise with power rr=10-6. 

• Example 1 – AR(1): in this example we consider a 
correlated input signal generated by a first order AR 
model given by u(n)=a1u(n-1)+z(n), with a1=0.9 and 
rz=0.19. The step-size of the proposed algorithm is 
evaluated from (19) (which leads to µ=1.0101) and 
the step-size of the conventional NLMS is set to 
µNLMS=1. The AP and the predictor orders are equal 
to the autoregressive order. Monte Carlo (MC) simu-
lations consider 500 runs. Fig.3 shows the mean 
weight behaviour and Fig.4 the excess mean square 
error (EMSE) considering the three algorithms. 

• Example 2 – AR(2): in this example the input signal 
is generated by a second order AR process given by 
u(n)=0.2u(n-1)-0.85u(n-2)+z(n) (poles radii equal to 
0.922) with rz=0.2722. All other simulation condi-
tions are the same as in the Example 1. Fig.5 shows 
the mean weight behaviour and Fig.6 the excess 
mean square error. 

• Example 3 – Acoustic noise: in this example the in-
put signal is sampled (at 44.1kHz) from a real IBM-
PC cooler acoustic noise. The plant impulse response 
corresponds to the first 128 samples of a real acoustic 
response of a room. The adaptive filter uses 128 co-
efficients; µ=µNLMS=1; predictor and AP orders are set 
to 1; 30 runs were performed in the MC simulations. 
Fig.7 shows the mean weight behaviour and Fig.8 the 
excess mean square error. Only one in each fifty 
samples is plotted in order to obtain smoother curve-
s. 
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Figure 3 – Example 1. Mean weight behaviour of the 50th coeffi-
cient. (a) AP (red); (b) conventional NLMS (green); (c) NLMS + 
predictor (blue); and (d) analytical model (black). 
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Figure 4 – Example 1. Excess mean square error. (a) AP (red); (b) 
conventional NLMS (green); and (c) NLMS + predictor (blue). 
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Figure 5 – Example 2. Mean weight behaviour of the 50th coeffi-
cient. (a) AP (red); (b) conventional NLMS (green); (c) NLMS + 
predictor (blue); and (c) analytical model (black). 
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Figure 6 – Example 2. Excess mean square error. (a) AP (red); (b) 
conventional NLMS (green); and (c) NLMS + predictor (blue). 

8. DISCUSSION 

All simulation and analytical curves show a quite good 
matching. The behaviour of the conventional NLMS was 
presented only in order to show the gain of performance (due 
to the whiten characteristics) of the analysed algorithms. The 
mean weight curves illustrate the similarity between the AP 
and the proposed algorithm behaviours, as well as the valid-
ity of the theoretical analysis. The MC simulations show 
good matching even in near real conditions, when non-AR 
input signals are considered (Example 3). The excess mean 
square error simulations corroborate, under all assessed con-
ditions, to the equivalence between the proposed structure 
and the AP algorithm. 

The proposed algorithm has a computational load of 
N+2P+19 multiply and accumulate (MAC) operations [12]. 
This amount is of the same order of the conventional NLMS 
(N+18) and much less than the AP algorithm (2NP+7P2). 
Table 1 presents the main steps to implement the proposed 
algorithm. 

In spite of the good results of the proposed algorithm it 
was verified that it shows stability problems for AR proc-
esses with pole radius above 0.95 and highly correlated non- 
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Figure 7 – Example 3. Mean weight behaviour of the 64th coeffi-
cient. (a) AP (red); (b) conventional NLMS (green); and (c) NLMS 
+ predictor (blue). 
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Figure 8 – Example 3. Excess mean square error. (a) AP (red); (b) 
conventional NLMS (green); and (c) NLMS + predictor (blue). 

 
AR signals. In such case fast versions of the AP algorithm 
should be used. As a result, before practical application it is 
necessary a careful investigation about the input signal char-
acteristics. 

A theoretical analysis of the excess mean square error 
behaviour will be a topic of a future work. 

Table 1: Proposed algorithm 

Equation (i=1,…P) (j=1,…N) Comment 

( ) ( ) ( )[ ]1
Tn u un n N= − +u …  Input vector 

( ) ( ) ( )
1

P

f i
i

u n u n a u n i
=

= − −∑  Filtered input 

( ) ( ) ( )1
T

f ff u n u n Nn  − + =  u …  Filtered input 
vector 

( ) ( ) ( ) ( )1i i P fa a u n u n in n µ= + −+   Predictor up-
date equation 

( ) ( ) ( ) ( )
1

0

N

i
i

e d w n u n in n
−

=

= − −∑  Error signal 

( ) ( )
( )

( )
( )1

2

1

1j j fN

f
k

e nw w u n jn n
u n k

µ

ε
−

=

= + −+
− +∑

  NLMS  
update equa-

tion 
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9. CONCLUSION 

This work presented the mean weight statistical analysis of 
the NLMS adaptive algorithm when the input regressor is 
filtered by a linear adaptive predictor. The obtained theoreti-
cal model, valid only for autoregressive signals, shows that 
its performance is similar to the Affine Projection algorithm, 
for a properly chosen step-size. Monte Carlo simulations 
show a very good match between both algorithms even for 
non-autoregressive inputs. This adaptive structure can be a 
good choice in control and filtering applications that require 
high adaptation speed and low computational cost. 
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APPENDIX A: Evaluation of E{aTUT(n)v(n)z(n)} 

Assuming three Gaussian random vectors y1=aTUT(n), 
y2=z(n) and y3=v(n) [9] they can be expanded as an or-
thonormal series [13] given by 

 
1 1 1

2 2 2

3 1 1 2 2 3 3 0

=
 =
 = + + +

y A w
y B w
y C w C w C w c

 (A1) 

where wi=[ wi-1 wi-2 … wi-N ]T for i=1,2; E{wl-iwk-j}|i≠j,l≠k=0; 
E{wj-i

2}=1; c0 is a mean value vector and 
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−
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 
 =
 
 
  

A

B

 (A2) 

Premultiplying y3 by y1
T and postmultiplying the result 

by y2 we obtain 

 

( )

( )

( )

( )

1 3 2 1 1 1 1 2 2,
1 1

1 2 1 2 2 2,
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N N
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N N
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N N
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+
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+

∑∑

∑∑

∑∑

∑∑

y y y A C B w

A C B w
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 (A3) 

Taking the expected value of (A3), using the independ-
ence between the orthonormal basis (E{wl-iwk-j}|i≠j,l≠k=0) and 
using (A1) we come to (13). 

REFERENCES 

[1] K. Ozeki and T. Umeda, “An adaptive filtering algo-
rithm using orthogonal projection to an affine subspace and 
its properties,” Electron.  and Communic. in Japan, vol. 67-
A(5), pp.19-27, Feb. 1984. 
[2] S. L. Gay and S. Tavathia, “The fast affine projection 
algorithm, ” in Proc. of Icassp 2002, pp. 3023-3026. 
[3] H. Ding, “A stable fast affine projection adaptation 
algorithm suitable for low-cost processors,” in Proc. of 
Icassp 2000, pp. 360-363. 
[4] M. Mboupp, M. Bonnet and N. Bershad, “LMS cou-
pled adaptive prediction and system identification: a statisti-
cal model and transient mean analysis,” IEEE Trans. Signal 
Proc., vol. 42(10), pp. 2607-2615, Oct. 1994. 
[5] S. C. Douglas, A. Cichocki and S. Amari, “Self-
whitening algorithms for adaptive equalization and decon-
volution,” IEEE Trans. Signal Proc., vol. 47(4), Apr.  1999.  
[6] S. J. M. Almeida, J. C. M. Bermudez, N. J. Bershad 
and M. H. Costa, “Statistical analysis of the affine projection 
algorithm for unity size and autoregressive input,” IEEE 
Trans. Circ. and Syst. - I, vol. 52, pp. 1394-1405, 2005. 
[7] S. Haykin, Adaptive Filter Theory, second edition, 
Prentice-Hall, 1991. 
[8] J. E. Mazo, “On the independence theory of equalizer 
convergence,” Bell Syst. Tech. Journal, vol. 58, pp. 963-993, 
May-June 1979. 
[9] N. J. Bershad and Z. Q. Lian, “On the probability den-
sity function of the LMS adaptive filter weights,” Acoustics, 
Speech, and Signal Proc., vol. 37(1), pp. 43-56, 1989. 
[10] M. H. Costa and J. C. M. Bermudez, “An improved 
model for the normalized LMS algorithm with Gaussian in-
puts and large number of coefficients,” in Proc. of Icassp 
2002, pp. 1-4. 
[11] J. C. M. Bermudez and M.H. Costa, “A statistical 
analysis of the epsilon-NLMS and NLMS algorithms for 
correlated Gaussian Signals,” Revista da Sociedade Bra-
sileira de Telecomunicações, vol. 20(2), pp. 7-13, 2005.  
[12] Y. Lu, R. Fowler, W. Tian, “Enhancing echo cancella-
tion via estimation of delay”, IEEE Trans. Signal Proc., 
vol.53(11), pp. 4159-4168, 2005. 
[13] N. J. Bershad, P. Celka and J. M. Vesin, “Stochastic 
analysis of gradient adaptive identification of nonlinear sys-
tems with memory for Gaussian data and noisy input and 
output measurements,” IEEE Trans. Signal Proc., vol. 47(3), 
pp. 675-689, 1999. 
 

 

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP


