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ABSTRACT

In this paper, a new location tracker for cellular networks in
mixed line-of-sight (LOS)/non-line-of-sight (NLOS) environments
is presented. NLOS situations result in biased UMTS measurements
such as Time of Arrival (TOA) or Angle of Arrival (AOA), hence
in erroneous position estimates. We propose to consider NLOS as
abrupt changes affecting the UMTS system which can be identified
by fault detection and isolation (FDI) algorithms such as the gen-
eralized likelihood ratio (GLR) or the marginalized likelihood ratio
(MLR). As the measurements depend on the mobile location in a
non linear way, we present an Unscented Kalman filter based MLR
to jointly identify the biased measurements and track the mobile
position. Numerical results show that the developped method im-
proves localization accuracy with a reasonable computational cost.

1. INTRODUCTION

The rapid development of wireless communications leads to
more and more integrated services for the user. Among them, ra-
diolocation has received a great deal of interest over the past few
years. As an alternative to the Global Positioning System (GPS),
cellular networks can be directly used to provide localization ser-
vices. In such a case, the position of a mobile user in a geographical
area is estimated through parameter measurements of signals prop-
agated between the mobile and a set of cellular base stations (BS).
The propagation parameters can be received signal strength (RSS),
angles of arrival (AOA), times of arrival (TOA), time differences of
arrival (TDOA), or their combination.

Because of their sensibility to the considered path loss attenua-
tion model, the RSS-based approaches have been proved to be less
accurate than TOA or TDOA approaches in high dynamic systems
[10]. The TOA method exploits the measurement of the line-of-
sight propagation delay. The transmitter/receiver distance is ob-
tained by multiplying this time measurement by the speed of the
light. To avoid the communication of the BS location to the mo-
bile and to eliminate the clock bias, one can take TDOA measures,
which are related to the relative distances between the mobile and
several BS. Nevertheless, the performance of these two latter meth-
ods depends mainly on the synchronization accuracy. As an alter-
native, the AOA technique estimates the mobile location by first
measuring the AOA of a signal from the mobile at several BS by
using antenna arrays. Contrary to the above-mentioned methods
which require at least three BS, two BS for positioning suffices for
AOA-based positioning.

On the basis of these measurements, the mobile location is then
obtained by trilateration. In the case of TOA for instance, the dis-
tance measurements define a circle around each BS. When the mea-
sures are noise-free, these circles intersect at a unique point which
represents the mobile location. However, in pratice, only noisy mea-
surements are available and one has only access to the location that
best fits the measurements. When the signal follows a direct path
between the mobile and the BS, the noise is a white Gaussian ran-
dom variable. However, most of the time, no direct path exists. This
leads to non-line-of-sight (NLOS) positive additive biases which
corrupt the mobile location estimates. To mitigate Universal Mo-
bile Telecommunications System (UMTS) positioning errors, sev-

eral NLOS identification techniques have been investigated.

Among them, Woo et al. [5] have proposed to identify NLOS
errors by comparing the standard deviation of range measurements
with a detection threshold. Another method presented in [6] con-
sists of carrying out a time-history based hypothesis test by consid-
ering a consecutive sequence of range measurements. More effec-
tive hypothesis tests have been developped based on measurement
error models. Thus, in Borras et al. [7], the NLOS error is modeled
as a non-zero mean Gaussian random variable (RV) and a decision
theoretical framework for NLOS identification is presented based
on a likelihood ratio test. However, all these approaches assume
that a great number of measurements corresponding to the same hy-
pothesis, namely LOS or NLOS, are available. Besides, the range
variation between these measurements has to be negligible.

To avoid imposing a NLOS error distribution, Chen et al. [8]
have developped a residual weighting algorithm respectively for an
AOA and a TOA location system. This approach requires to com-
pute the weighted residuals from the least-square location estimates
over each range measurement combination. The final location es-
timate is the linear combination of the least-square location esti-
mates weighted inversely to their residuals. However, this heuristic
method needs a great number of BS and need to consider all the
possible range measurement combinations.

More recently, Grosicki et al. [1] have proposed to select the
most reliable set of three TOA measurements in the sense of the
minimisation of a criterion. This latter is chosen as the square er-
ror between all the BS distance measurements and their least-square
estimates from each possible 3-uplet of TOA measurements. This
method has the advantage of requiring less BS than the above-
mentioned ones, but does not take into account information from
the past measurements.

To take advantage of the measurement time-history, Najar et al.
[3] introduce a state model for the mobile location. As the TOA
measurements depend on the mobile location in a non linear way,
they propose a tracking method based on an Extended Kalman filter
(EKF). The main contribution of this work is the joint estimation
of both the position unknown and the bias on the measurements.
More recently, Huerta et al. [2] have proposed a joint tracker of the
NLOS situation and the mobile position by a Rao-Blackwellized
Particle filter.

In this paper, the NLOS errors are considered as mean jumps
affecting the measurements. Therefore, we apply a sequential Fault
Detection and Isolation (FDI) technique to jointly identify the mea-
sures in NLOS and track the mobile position. Similary to [3] and
[2], we make use of the measurement correlation through time to
improve detection, but we do not estimate the NLOS error ampli-
tude. Most FDI algorithms apply to linear dynamic system such
as the well-known Generalized Likelihood Ratio (GLR) first pre-
sented in [13] and more recently the Marginalized Likelihood Ratio
(MLR) presented by Gustafsson [14]. Such methods have been ex-
tended to weakly non linear systems by carrying out local lineariza-
tions. As an alternative, the use of particle filtering for FDI has also
been investigated lately but turns out to be quite costly [11]. This
work proposes an Unscented Kalman filtering (UKF) based MLR
approach to jointly identify the NLOS measurements and track the



mobile position.

The remainder of the paper is organized as follows. The sys-
tem model is detailed in section 2. In section 3, the UKF-based
FDI method is described. Finally, in section 4, the relevance of the
proposed algorithm is illustrated by simulation results.

2. SYSTEM DESCRIPTION

Let us focus our attention on the localization of a mobile on a
wideband CDMA cellular system. We assume that an adaptive an-
tenna array is available at all the Np BS and that these latter are syn-
chronized between them and with the mobile to be located. At any
time, this mobile can receive pilot signals from its home BS and at
least two neighboring BS. We consider two types of measurements
for location purposes :

e The TOA can be measured as the position of the first peak of
the autocorrelation function of the propagation channel coeffi-
cients. The latter are classically provided by the RAKE receiver
which carries out intercorrelations of the received signal with
delayed versions of the pilot sequence. In pratice, with respect
to Nokia measurement results, the TOA are corrupted by esti-
mation noises with a standard deviation equal to 150m [6].

o As for the AOA, the BS steers its adaptive antenna spot beam to
track the dedicated pilot signal from the mobile for improved re-
ception. This provides the arriving azimuth angle of the signal
from the mobile. In a macrocell environment, the AOA mea-
surements can be obtained with an accuracy of a few degrees
[9].

Under these considerations, the generalized location observation
equation in matrix form is given by:

2(t) = £ (p(t)) +n(1) + v(1) (1

where z(t) = [z1(t) --- 2, (t)]7 denotes the Np x 1 measure-
ment vector stacking the measurements obtained from the Np
BS. The vector p(r) = [xar(t) ya(¢)]T is composed of the two-
dimensional mobile coordinates in a planar frame of reference.
f(p(r)) is a non linear function of the mobile coordinates.
n(t) = [n1(t) - nn,(t)]" is the zero-mean Gaussian noise vector
of covariance matrix Q = %Iy, xn, and v(r) = [vi(t) --- vy, (£)]"
is the NLOS error vector. If the /" BS is in LOS, then v; (r)=0,
otherwise v;(¢) is a time-correlated RV [2].

e For TOA measurements, denoted {7(t)},_; ... y,.one has:

at) = en(t) =\ Car(0) =322+ O (0) =02+ my (o) + v (o),
@3]
with ¢ the speed of light and {x;, y;} are the I BS coordinates.
e For AOA measurements, denoted {6, } I=1, -, Np> ODE has:

7;(t) = 0)(t) = arctan (M) +ny(t)+ vi(t) 3)
xm(t) —x

In addition to these observation equations, a state model is re-
quired to use a sequential estimation algorithm such as a Kalman
or a particle filter. The choice of the model directly depends on the
kinetics of the mobile user. Classical motion models used in navi-
gation and tracking are presented for instance in [15]. In a general
manner, they can be written:

x(t) =Ax(t — 1) +u(r), 4)

where x(¢) is the so-called state vector, the components of which
are the parameters of interest, A is a square matrix, and u(r) is the
state noise, assumed white and Gaussian with covariance matrix 2.

If the mobile user moves slowly, a 1* order model can be used
and x(¢) = p(¢). If its velocity v(r) changes through time, it is

appended to the state vector and x(t) = [p(t)7,v(t)"] " resulting

in a 2" order model.

In equations (2) and (3), the TOA and AOA measurements are
related to the position in a non linear way. Therefore, a particle
filter could be used to track the mobile position, but the associated
computational cost is considered excessive. A low-cost solution
consists in linearizing the system by using an EKF. Nevertheless,
this method involves the calculation of derivatives and is only
accurate to the 1% order. The EKF solution may diverge when
the system is highly non linear. A better approximation can be
obtained by combining Kalman filter equations with the Unscented
transform (UT) to propagate the mean and the covariance through
the non-linearities [4]. Contrary to the EKF, this so-called Un-
scented Kalman filter (UKF) is accurate to 2 order with a similar
computational cost. The principle of this method is recalled in the
next section.

3. UKF STATE ESTIMATION

Similarly to the EKF, the UKF computes a Gaussian approxi-
mation of the distribution of the state vector conditionnally upon the
observations p (x(r)|z1), where in the sequel z;., = [z(I) .. 2(p)t.
However, the UKF directly estimates the mean and covariance ma-
trix of this distribution by using the Unscented Transform (UT).

3.1 UT principle

The UT is a deterministic sampling technique whereby a finite set of
carefully chosen sample points are used to capture the statistics of
a RV. The principle is the following. Assume X is a random vector
of dimension L which is transformed into the vector Y:

Y:g(X),

where g is a non linear mapping.

If X is Gaussian and X and Py denote its mean and covariance
matrix respectively, the sigma points describing the distribution of
X are obtained as:

% = X, fori=0,
2 = X+((L+21)Px), fori=1,...,L
2 = X—((L+2A)Py), fori=L+1,... 2L,

with A is a scaling parameter the purpose of which is to refine the
approximation of the higher order moments.
The corresponding UT weights are computed as :

W' = AJ(L+A),
W = AJ(L+2)+(1—a’+B),
Wf = W'=1/{2(L+1)},

where the choice of a and f3 is an open problem discussed for in-
stance in [4].

Two sets of weights are required, one to compute mean esti-
mates and the other dedicated to covariance estimates. Then, these
sigma points are propagated through g to yield the posterior sigma
points Y; = g(y;) fori=1,...,2L+ 1. Finally, the 1% and 2" order
statistics of ¥ can be approximated as:

2L
vy o= YW,
i=0
2L
> WG =P (=)
i=0

P

3.2 Application of UKF to UMTS localization

The UKF can be viewed as a recursive application of the UT to a RV
composed both of the state vector components and the measurement



and state noises: X (1) = [x(¢),u(r),n(t)] in our case. The mean and
covariance matrices computed this way are then incorporated to the
standard Kalman filter equations to obtain the UKF formulation.
Thus, assuming the NLOS bias vector is known, the UKF pro-
vides at each time step a Gaussian approximation of the state distri-

bution:
p(x(t) 21, Vi) = A (XV(2), Pr(1)) )

with XV (¢) the state estimate at time ¢ and .4 (u,) is a Gaussian
distribution the mean and the covariance of which are respectively
equal to p and X.

In the meantime, the UKF estimates the probability of observ-
ing measurement z(¢) conditionnal upon the values of the bias vy
and the previous observations zj;—1:

P () zia—1,via) = A (2V(1),PL(1)). (©6)
We describe hereafter a FDI approach based on these statistics to
cope with the NLOS biases.
4. UKF BASED FDI
4.1 Problem formulation

In this paper, we propose to consider NLOS as mean jumps af-
fecting the UMTS localization measurements, either TOA or AOA.
Detection of the induced biases is performed by deciding between
multiple competing hypotheses at each time step ¢:

Hy(t)
Hl(l,k)

all BS are in LOS
some of the BS are in NLOS from time k£ < ¢

In accordance with the previous notations, the bias vector v() is
null under Hy(#) hypothesis whereas at least one of its components
has taken a strictly positive value otherwise. This formulation al-
lows delayed detection of small biases which would gradually drag
off the UKF estimates.

In a general manner, FDI is made difficult for the available mea-
surements depending on the unknown system state vector. Existing
approaches in the litterature proceed either by marginalization or
estimation. When the studied dynamic system is linear Gaussian,
the marginalization is analytically tractable leading to various ap-
proaches which monitors the residuals of the estimation filter. One
of the most popular algorithm is the Generalized Likelihood Ra-
tio (GLR) which applies when the system state is estimated by a
Kalman filter. This algorithm uses the KF innovations as residuals
to carry out hypothesis testing. In [14], Gustafsson has proposed the
marginalized likelihood ratio (MLR) as an alternative more robust
to modeling errors. Such methods have been extended to weakly
non linear systems by applying local linearization schemes. An Ex-
tended Kalman filter is then used in place of the classical Kalman
filter for state estimation. This work extends the MLR to non linear
systems by taking advantage of UKF techniques to avoid the lin-
earization step. The proposed algorithm is detailed hereafter.

The MLR makes decisions on the basis of the following log-
likelihood ratio (LLR) in accordance with Neyman-Pearson lemma:

_ oy PEHI (1))
Tk =2 = )

By applying Bayes rule, this LLR can be written in a more compact

manner: L
A Hy (¢ 1 k—
T(t.k) = o PR Hi (0 K) 21 1)
P (2K [Hos 21:5-1)
One of the difficulty to compute this quantity is the unknown
bias value v under H; hypothesis. It can be reasonably assumed
that the detection delay is small enough so that the bias is constant
during time interval [k,7]. The GLR substitutes this nuisance pa-
rameter for its ML estimate. One of the original idea of the MLR is
to eliminate v by marginalization. More precisely:

@)

®

P2k [Hi (2, k), 21:0—1) =~ /p(zk:t‘vvkyzlzk—l)P(V)dW )

where p(zj|Vv,k,z1k—1) is the likelihood function for a bias v af-
fecting the observation vector from time & to ¢.
The decision rule then takes the form:

e Selection of the best change time candidate

k = argmax T (1,k), (10)
k
e Thresholding
H,
so=T(t,k) 2 h, (1)
Hy

where s; is the so-called test statistic and #/ is the hypothesis test
threshold, the choice of which is commented in the sequel.

In the framework of linear Gaussian systems which undergo
a mean jump, the impact of v on the filter residuals can be made
explicit. Thus, an analytical expression can be derived for T'(¢,k)
when a convenient prior is chosen for v. The problem at hand is
made more difficult by the non linear measurement equation. The
contributions of this paper are twofold. First, we propose to take ad-
vantage of the UT to approximate the likelihood function appearing
in (9). Second, we run a bank of UKF to yield Gaussian approxi-
mations of the predicted measurement distributions under each can-
didate hypothesis.

4.2 Application of UT to FD

The key idea of the proposed approach is to use UKF to have
Gaussian distributed test variables even if the studied system is non
linear. Besides, the MLR test statistic computation requires an in-
tegration over all possible values of v, which cannot be performed
analytically. As an alternative, we propose to make use of the UT
as follows. Assume a set of sigma points associated to the bias RV
v has been generated. If they are denoted N = {N;};—;.y, and Wy,
or W,Gj are the corresponding weights, then the following approxi-
mation of expression (9) can be used:

Ny
P2 Hi (8,K),21-1) = D WAL P (2 INis K, 21k 1), (12)
i=1

where p(zx|Nj,k,z1.—1) is the probability of observing zz, if a
mean jump of amplitude N; occurs at time k.

The choice of convenient sigma points is commented later. It
should be noted that they can be generated off-line at once before
running the FDI algorithm. Assuming k is known and v = N;, a
Gaussian approximation of the distributions appearing in (12) can
be obtained by using UKF. A straightforward solution to compute
the test statistic 7'(¢,k) then consists in running as many UKF as bias
sigma points and possible values for the NLOS time of occurrence
k. Such an approach, though exhaustive, results in an exponentially
increasing computational complexity. Similarly to the GLR, we
suggest limiting the search to a finite-length window t — L,, < k <0.

When implementing the described method, numerical difficul-
ties arise from the direct computation of the LLR. To prevent such
difficulties, the mixture of Gaussian distribution in (12) can be
merged in a single Gaussian distribution as in the IMM algorithm
developped by Bar-Shalom [16]. If applied, this merging provides
a simple expression of T'(¢,k) in the form of:

t

00 = 3 )~ 20) () (ep) - 2(p)
p=k
)20 (PL) o) 2 (p) K.

13)

where :
- K is a constant independant of the observations,
- %(p) and PY(p) are the predicted observation vector and its as-

sociated covariance matrix computed by the UKF under the null



hypothesis,
-z'(p) and PL(p) result from the merging process:
1 &
2p) = 2w,
i=1
1 e 1 1T
PLp) = 2w (P + @ () -2 (o) () -2 ()T ).
i=1

with 2V (p) and PY'(p) the predicted observation vector and its as-
sociated covariance matrix when v = N; as denoted in section 2.

4.3 Application of UT to FI

Along with FD comes FI which consists of identifying the BS
in NLOS to pursue navigation with a non-erroneous set of measure-
ments. In this paper, we propose to perform simultaneously FD and
FI by taking into account not only the times of appearance of the
NLOS biases but also their directions. To study one after the other
all the possible LOS/NLOS combinations, we use specific v-sigma
points with a limited number of non-zero components correspond-
ing to the considered NLOS directions. By sake of simplicity, we
assume only one of the BS can switch from a LOS to an NLOS sit-
uation, or reversely, at a given time step. Note that this is a classical
hypothesis in the fault diagnosis literature which is satisfied pro-
vided NLOS biases do not appear simultaneously on different mea-
surements and provided the detection delay is short enough. Hence,
the following families of sigma points are generated:

Nij=(0,...,vi,...,0)" fori=1,...,Nyand j=1,...,Np, (14)
where only the j component is non zero.
The possible values of v; are generated by applying the UT sam-
pling technique considering a scalar truncated Gaussian distribution
of strictly positive mean. Three different values are thus obtained.
To make identification possible, one LLR is then computed for each
possible NLOS direction by restricting the sum in (12) to the j
subset of sigma-points {Nj;}, for i =1,...,N,. The resulting test
variable, denoted T}(t, k), stands for the hypothesis of a mean jump

affecting the j measurement from time k to 7. In a second step, be-
fore making the decision (11), we select both the best change time
candidate and its associated direction j as follows:

(k, j) = argmax T;(t, k).
k.j

The corresponding test variable s; = Tj(t,fc), is finally compared to
the test threshold to decide if there is actually a NLOS situation. In
this case, measurement j is excluded, at least temporarily since the
LOS/NLOS situation evolves very quickly.

5. SIMULATION RESULTS

In this section, we study the relevance of the proposed algorithm
on simulated data. A two-dimensional trajectory corresponding to
a mobile user moving onto an horizontal plane at a velocity varying
around 60 km/h has been generated. This setting corresponds to a
classical urban car scenario. The mobile is assumed to communi-
cate with four neighboring BS. The TOA and AOA measurements
all along this trajectory have been computed by considering the fol-
lowing noise specifications.

e As for the TOA, the noise has been generated as a zero mean
white Gaussian process of standard deviation equal to 150 me-
ters. One measurement is corrupted by a NLOS error from the
24'" time step. The amplitude of this introduced bias is chosen
to be equal to 1300 meters. These values are coherent with [6].

o When using AOA, the noise is modeled as a zero-mean white
Gaussian process with a standard deviation equal to 5 degrees.
A NLOS bias of amplitude equal to 20 degrees appears on one
measurement from the 24" time step in accordance with [9].

The choice of the test threshold as well as the mean and
covariance of the NLOS a priori bias distribution deserves further
comments. The threshold for a hypothesis test is classically set as
a function of a given false detection probability. However, due to
the non linear measurement equation, the distribution of the test
variable under Hy hypothesis does not admit a closed-form expres-
sion. To overcome this problem, we have estimated the cumulative
probability density function of 7' by running extensive Monte Carlo
(MC) simulations corresponding to different realizations of the
measurement noise for the reference urban trajectory. The obtained
plot for TOA measurements is represented in Figure 1, a similar
cumulative probability function has been obtained when dealing
with AOA measurements. By using these results, the threshold has
been set to ensure a false alarm probability of 0.05.

As for the sigma points N;;, they have been generated according to
a truncated non-centered Gaussian distribution .4 (2000,20002/9)
and .4 (40,40%/9) for TOA and AOA measurements respectively.

In the following, the proposed results have been obtained by
averaging 1000 MC runs. The fault detection/isolation performance
is presented in Table 1 in terms of probability of good isolation
(Pgr), probability of good detection and estimation of the NLOS
time of occurrence (Pgpgg), probability of good estimation of the
NLOS time of occurrence but with a delayed detection (Pppgk),
probability of a delayed estimation and detection of the NLOS
error time of occurrence (Ppppg) , probability of false detection
(Prp) and mean detection delay for the two types of measurements.
The proposed FDI algorithm shows good performance in terms of
mean detection delay and fault isolation. In particular, the interest
of the delayed detection appears for the AOA measurements where
it takes on average 1.08s to detect a NLOS error but the time of
occurrence is properly recovered 870 out of the 1000 runs.

Finally, the Root Mean Square error (RMSE) for the consid-
ered trajectory is illustrated in Figure 2 when considering TOA
measurements and in figure 3 when considering AOA ones. The
on-line detection/exclusion of the BS in NLOS appears to signif-
icantly decrease the estimation error obtained without applying
a detection/exclusion procedure (cf. Figures 4 and 5). It should
be noted that the RMSE changes through time due to the varying
mobile/BS geometry. In addition, the AOA performance can be
greatly impaired by sudden changes of dynamics as shown by the
rmse peak at time 40 s.

TOA AOA
mesurements | mesurements
Psr 0.988 0.9980
PspGE 0.892 0.0620
PppGE 0.0080 0.870
PppDE 0.0020 0
Prp 0.098 0.0680
mean delay 0.09s 1.0800s

Table 1: Performance of the proposed FDI algorithm.
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Figure 1: Empirical Cumulative Probability Function (CPF) for T
when considering TOA measurements.
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Figure 2: RMSE of the tracking algorithm during the considered
trajectory with detection of NLOS TOA errors
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Figure 3: RMSE of the tracking algorithm during the considered
trajectory with detection of NLOS AOA errors
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Figure 4: RMSE of the tracking algorithm during the considered
trajectory without detection of NLOS TOA errors
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Figure 5: RMSE of the tracking algorithm during the considered
trajectory without detection of NLOS AOA errors

6. CONCLUSION

In this paper, a new MLR algorithm based on the UT has been
proposed to mitigate NLOS errors in a UMTS positioning system.
The developped algorithm has the advantage of simultaneously de-
tecting and correcting the NLOS biases and estimating the mobile

dynamics. The on-line procedure is shown in particular to pre-
vent positioning error accumulation. As a perspective, the method
should be extended to handle several NLOS errors at a time.
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