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ABSTRACT

This paper investigates a multilayer perceptron (MLP) based
acoustic feature mapping to extract robust features for au-
tomatic speech recognition (ASR) of overlapping speech.
The MLP is trained to learn the mapping from log mel fil-
ter bank energies (MFBESs) extracted from the distant micro-
phone recordings, including multiple overlapping speakers,
to log MFBEs extracted from the clean speech signal. The
outputs of the MLP are then used to generate mel filterbank
cepstral coefficient (MFCC) acoustic features, that are subse-
quently used in acoustic model adaptation and system eval-
uation. The proposed approach is evaluated through exten-
sive studies on the MONC corpus, which includes both non-
overlapping single speaker and overlapping multi-speaker
conditions. We demonstrate that by learning the mapping
between log MFBEs extracted from noisy and clean signals
the performance of ASR system can be significantly im-
proved in overlapping multi-speaker condition compared a
conventional delay-sum beamforming approach, while keep-
ing the performance of the system on single non-overlapping
speaker condition intact.

1. INTRODUCTION

A recent thrust of ASR research has focused on techniques
to efficiently integrate inputs from multiple distant micro-
phones (multi-channel) for multiparty meetings (where more
than one speakers can be active at the same time). The most
fundamental and important multi-channel method is the mi-
crophone array beamforming method, which consists of en-
hancing signals coming from a particular location by filter-
ing and combining the individual microphone signals. The
simplest technique is delay-sum (DS) beamforming, which
performs a summation of delayed microphone inputs, where
the delays are calculated to compensate for the differing time
of arrival of the the desired sound source at each of the mi-
crophones in the array.

Other sophisticated beamforming techniques, such as
those proposed by Frost [1] or the Generalized Sidelobe Can-
celler (GSC) [2], optimize the beamformer to produce a spa-
tial pattern with a dominant response for the location of in-
terest. The main limitation of these schemes is the issue of
signal cancellation. In [3] a superdirective beamformer and a
further post-filtering have also been proposed to suppress in-
terfering speech. However, in the case of overlapping speech
(with coherent noise), the estimation of coherence matrix is
far from trivial, and inaccurate estimations may consequently
introduce artifacts into the reconstructed signal.

It is important to note that the motivation behind the mi-
crophone array techniques such as delay-sum beamforming

is to enhance or separate the speech signals, and as such they
are not designed directly in the context of ASR. In practise,
it is common for meeting ASR that a well trained acous-
tic model is first obtained using clean speech data (conver-
sational telephone speech, broadcast news), which is then
adapted by using the meeting speech both from close talking
microphone (nearfield) as well as distant microphone speech
after enhancing the speech by delay-sum beamforming [4].
This approach has been shown to perform well. However, if
one looks closely at the ASR errors, a considerable amount
of errors occur at the places where speakers overlap (mul-
tiple speakers are active) [5]. Thus, improving the signal-
to-noise ratio (SNR) of the signal captured through distant
microphones may not necessarily be the best means of ex-
tracting features for robust ASR on distant microphone data,
particularly during periods of speaker overlap.

In the literature, non-linear feature mapping using neu-
ral networks has been extensively studied for reducing noise
[7], noise robust ASR [8, 9, 12], speaker normalization [10],
channel robust ASR [12, 13], robust distant-talking micro-
phone ASR [11, 12]. In these approaches, a neural network
is trained to learn the mapping between acoustic features of
“noisy” speech to acoustic features of clean speech. In previ-
ous work, the mapping was typically performed on cepstral
domain features for ASR studies.

In this paper, we investigate the use of neural network
based acoustic feature mapping to extract features for ro-
bust speech recognition on multiple overlapping speaker dis-
tant microphone recordings. In our work, ASR is performed
on mel frequency cepstral coefficient (MFCCs) acoustic fea-
tures, but the mapping is performed on the log mel filter bank
(MFBEs) energies, to obtain noise robust estimation of the
MEFCCs. Thus, we train a multilayer perceptron (MLP) that
learns the mapping from log mel filter bank (MFBESs) ener-
gies of noisy speech (speech from distant microphones) to
the log MFBEs of clean speech.

We have performed our investigations on the Multichan-
nel Overlapping Numbers Corpus (MONC) corpus. Our
studies show that by learning the mapping between noisy
and clean log MFBEs significant improvement in the ASR
performance can be achieved on speaker overlap conditions
when compared to MFCCs generated from the DS beam-
formed speech signal. While we have tried to maintain simi-
lar evaluation method as used in previously published results
on the MONC corpus [3, 14], we avoid making a direct com-
parison since any differences in system configuration may
unfairly favour one over the other. We do note however that
overall our proposed approach does compare favourably with
published results.

The paper is organized as follows. In Section 2, we de-
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scribe briefly the neural network based mapping approach.
Section 3 describes the experimental setup. Section 4 pro-
vides the experimental results and analysis. In Section 5, we
summarize with main conclusions.

2. NEURAL NETWORK-BASED FEATURE
MAPPING

The basic idea of feature mapping approach is that given a
sequence/set of a pair of feature vectors (x,,s,), where n =
1,---,N and N is number of pairs, learn a mapping function
f(+) such that:

Sn=f(xn) ey

where §,, is an estimate of s,. In the neural network-based
mapping approach the learning of the mapping function f(-)
amounts to training a neural network with x, as the input
and s, as the target output. In our case, the input feature vec-
tor x,, corresponds to the log MFBEs of noisy speech signal
(speech from distant microphones) and the target output fea-
ture vector corresponds to the log MFBEs of clean speech
signal. The neural network is multilayer perceptron (MLP).

Unlike previous approaches, where the mapping of cep-
stral features have been mainly investigated, we investigate
mapping of log MFBEs. We can motivate this from a physio-
logical interpretation of the log spectral energies, but stronger
justification can be gained by considering the key properties
of the log MFBEs. In particular, with respect to the truncated
cepstral representation, the log MFBEs contain highly corre-
lated and redundant information. Such redundancy may be
useful when the spectrum contains low SNR in narrowband
regions that only strongly affects some of the MFBEs. For
the case of overlapping speech, such conditions may arise
due to the formant peaks of competing speaker(s). We train
and evaluate our ASR acoustic model on MFCC features es-
timated from log MFBEs mapped from far-field microphone
to clean recording conditions.

There are two possible approaches to learn the mapping
between x,, and s,,:

e Learn a mapping function f;(-) for each feature compo-
nent d = 1,---,D. In other words, training a mapping
neural network for each log MFBE. We refer to this ap-
proach as component independent mapping.

e Learn a single mapping function f(-). In other words,
training a single neural network that maps all the log MF-
BEs. We refer to this approach as vector-based mapping.

In our experiments, multi-layer perceptron (MLP) with
one hidden layer are used for learning the mapping function
f(+) over the training examples with minimum mean squared
error (MMSE). The use of MMSE in the log spectral domain
is motivated by the fact that log spectral measure is more re-
lated to the subjective quality of speech [15] and that some
better results have also been reported with log distortion mea-
sures [16]'. Note that clean speech is required for finding the
optimal parameters in the regression training, while in the
test phase the clean speech is no longer required i.e. it is
predicted from the input log MFBEs from the distant micro-
phones speech.

'In [16], Porter and Boll found that for speech recognition, minimizing
the mean squared errors in the log |[DFT| is superior to using all other DFT
functions and to spectral magnitude subtraction.
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Figure 1: Diagram of the mapping-based speech recognition.

3. EXPERIMENTAL DATA AND SETUP

The Multichannel Overlapping Numbers Corpus (MONC)
[6] was used to perform speech recognition experiments.
This database comprises a task for continuous digit recogni-
tion in the presence of overlapping speech. The database was
collected in a moderately reverberant, 8.2mx3.6mx2.4m
rectangular room. Three loudspeakers (L1, L2, L3) were
placed at 90deg spacings around the circumference of a 1.2m
diameter circular table at an elevation of 35cm. The place-
ment of the loudspeakers simulated the presence of a desired
speaker (1) and two competing speakers (L2 and L3) in a
realistic meeting room configuration. An §-element, equally
spaced, circular array of 20cm diameter was placed in the
middle of the table, and an additional microphone was placed
at the centre of the table. All subsequent discussions will re-
fer to the recording scenarios as S1 (no overlapping speech),
S12 (with 1 competing speaker L.2), S13 (with 1 competing
speaker L3), and S123 (with 2 competing speakers L2 and
L3).

The corpus is divided into training data (6049 utterances)
and per-condition data sets for development/adaptation
(2026 utterances) and testing (2061 utterances). In the fea-
ture mapping methods, the MLP is trained from data drawn
from the development data set which consists of 2,000 utter-
ances (500 utterances of each recording senario in the devel-
opment/adaptation set). The total number of training exam-
ples (frames) are 371,543. For a test utterance, the log MFB
outputs were first estimated, and then were converted into
MEFCC:s for recognition by using the Discrete cosine transfor-
mation (DCT). A diagram of the model training and feature
estimation is given in Fig. 1.

The speech recognition experiments were carried out us-
ing whole-word HMMs. The word models had 16 emitting
states, each modelled by a GMM of 20 components. The
‘sil’ and ‘sp’ models had three and one emitting state, re-
spectively, with 36 Gaussian mixture components. The du-
ration of the feature analysis is 25 milliseconds with a frame
shift of 10 milliseconds. 23-channel log-MFB analysis is ap-
plied, which is transformed into 12 mel-frequency cepstral
coefficients (MFCCs). Thus, the feature vector comprises 12
MFCCs and log-energy with corresponding delta and accel-
eration coefficients. A baseline speech recognition system
was trained using HTK on the clean training set from the
original Numbers corpus. MAP adaptation was performed
on the baseline models using the development/adaptation set
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for each scenario pair, and then the speech recognition per-
formance of the adapted models was assessed using the cor-
responding recorded test set.

We performed two standard multichannel ASR experi-
ments:

1. centre: Using the MFCCs extracted from the centre mi-
crophone speech signal.

2. DS: Using the MFCCs extracted from the delay-sum
beamformer (DS) enhanced speech signal (standard ap-
proach).

When learning the mapping using MLP, the input fea-
ture to the MLP can be extracted from a single distant micro-
phone, or all the distant microphones, or a enhanced speech
signal or combination of them. We performed the follow-
ing ASR experiments for the component independent method
where an MLP corresponding to each log MFBE component
and one MLP for frame level log energy is trained (i.e. 23 +
1 MLPs):

1. MA: MFCCs extracted using log MFBEs estimated by
mapping MLP that takes log MFBEs extracted from all
the 8-channel array speech as input.

2. MDS: MFCCs extracted using log MFBEs estimated by
mapping MLP that takes log MFBEs extracted from DS-
enhanced speech as input.

3. MDSC: MFCCs extracted using log MFBEs estimated
by mapping MLP that takes log MFBEs of both DS-
enhanced speech and centre microphone speech as input.

The size of the MLPs across the different ASR experiments
were kept same. We then selected the best performing MLP-
based mapping method and compared it against the standard
DS method using vector-based mapping approach.

4. RESULTS AND ANALYSIS
4.1 Component Independent Mapping

Table 1 shows recognition results in terms of recognition ac-
curacies for center, DS and different methods of the compo-
nent independent approach. The upper half and lower half of
this table depict the recognition results without and with the
adaption of acoustic models, respectively. Some of the major
observations are:

e ASR performance drops when going from single non
overlap speaker condition S1 to overlap speaker condi-
tions S13, S122, and S123 with the three speaker overlap
condition S123 having the worst performance.

e Irrespective of the method, mapping approach always
yields better performance for all conditions when com-
pared to center, and DS (except for the S1 condition after
adaptation), with the improvements much pronunced in
the overlap conditions.

e Straight forward not-so-surprising results which have
also been earlier observed in the literature [11, 4] such
as model level adaptation improves performance, DS is
better than center, and MDS being better than DS.

e Among the mapping methods MDCS stands out as the
best method indicating that while mapping features com-
bining the features from different “versions” of speech
signal at the input of the MLP is a good idea.

2In S12 condition the speakers are more closer than S13 condition which
can explain why S12 condition is having lower performance than S13 con-
dition

Table 1: Recognition accuracies (as percentages) of different
systems for component independent mapping studies. Upper
half of the table represents accuracies for no adaptation case
and lower half of the table represents accuracies for adap-
tation case. The best system based upon average accuracy
across all the conditions is in boldface fonts.

ST S12  S13  S123 | Average

centre | 78.0 345 408 243 44 4
DS 73.8 463 547 398 53.7
MA 80.0 56.0 656 482 62.5
MDS | 825 570 69.1 497 64.6
MDSC | 85.6 633 732 544 69.1
centre | 89.0 38.7 469 27.6 50.6
DS 904 619 702 528 68.8
MA 847 649 73.0 54.7 69.3
MDS | 88.8 635 73.6 558 70.4
MDSC | 88.1 70.6 774 627 74.7

The effectiveness of the MLP-based mapping approach
can also been seen from the viewpoint of signal-to-deviation
ratio (SDR), which is defined as

2
Zf’\l[:l lIsall
N
n=1

SDR [dB] = 10log, 2)

|Sn*§n”2,

where s, is the log MFBE feature vector from the clean
speech and §,, is the estimated feature vector. Here N denotes
the number of frames during one utterance. The SDR is aver-
aged over the number of utterances. Fig. 2 shows the average
SDR for different methods. First it can been seen that SDR
drops as the amount of overlap increases. Secondly, the SDR
values for all the mapping methods are higher than DS and
center. The highest being for the best performing mapping
method MDSC.
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Figure 2: SDR values of different methods.

4.2 Vector-based Mapping

As mentioned earlier in Section 3, we picked the best method
for component independent mapping i.e., MDSC and ex-
tended it to vector-based mapping approach. Figure 3 il-
lustrates the effect of the vector-based mapping method for
an utterance in S12 recording scenario. It can be seen that
in non-speech segments (e.g., the first and last 15 frames)
the interfering speech energies are suppressed by using the
mapping method, compared to noisy speech. The vector-
based mapping method results in better approximation to the
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clean speech than the component-based mapping method. In
both non-speech and speech frames, vector-based mapping
method closely follows the clean speech spectral envelope
when compared with the component-based mapping method.

first log MFB outputs

20 40 60 80 100 120 140 160 180
frame index

12 12

10 -—= 7 N 10 AN N

8

log MFB outputs
log MFB outputs

5 10 15 20 5 10 15 20
filterbank index filterbank index

Figure 3: Effect of the mapping method in S12 record-
ing scenario. Upper: the first log MFBE trajectories of
the clean speech signal (bold solid line), centre microphone
speech signal (dashed line), component-based mapping (dot-
ted line), and vector-based mapping (thin solid line); Lower
half left: log MFBE outputs of different speech signal at
the fifth frame (non-speech segment); Lower half right: log
MEFBE outputs of different speech at the 50th frame (speech
segment).

When adapting the acoustic model on a development
data the objective is to bring the emission distribution of the
acoustic model closer to the “adapted” feature or target fea-
ture distribution. The main advantage of adaptation is that
the models need not retrained from the scratch. However,
although the noisy features are enhanced by using the MLP-
based mapping method, the mapped features could not ap-
proximate those of the clean speech completely. there may
exist a mismatch between training and testing conditions, if
we use HMM trained over the clean data to test the mapping-
enhanced speech. It may be possible to improve the match
between the trained emission distribution and the unseen test
data distribution by extracting the feature for acoustic model
training data as well using the MLP mapping. In order to
check it we extracted the feature for the acoustic model clean
speech (single speaker) training data by mapping the log MF-
BEs, followed by estimation of MFCC, and training of the
acoustic model. We refer to this approach as MDSC+FA. In
Fig. 4, we compared the statistical characteristics of the first
and second order MFCCs in the training and test data. It can
be seen that the mismatch of the probability density functions
(pdf) between the training and test conditions are reduced by
using the mapping-generated training data, compared to the
original clean training data.

A similar approach can be applied for delay-sum beam-
forming DS system, where, DS beamforming is performed
on S1 condition of acoustic model training data and then the

a0

Figure 4: Probability density functions (pdf) of the first and
second order MFCCs of the original clean training data (bold
solid line), generated training data (dashed line), and esti-
mated test data in S12 recording scenario (thin solid line).

acoustic model is trained. We refer to this approach as DS2.

We also performed the MLP mapping-based recogni-
tion experiments on the mel-filterbank cepstral coeffients
(MFCCs) for comparison. We refer to this approach with
and without feature adaptation for the training data as MD-
SCC and MDSCC+FA, respectively.

Table 2 shows the recognition performance of the differ-
ent experiments described above. We can draw following
inferences from the results:

e Vector-based mapping approach performs better than
component independent mapping approach. This can be
due to the fact that MFBEs are correlated and, the ability
of MLP to model correlation effectively. It also can be
seen that unlike the component independent mapping the
performance of vector-based approach for S1 condition
is slightly lower or on par with the DS.

e For no adaptation case, DS2 yields a better system when
compared to DS however, after adaptation the DS yields
the better system. This can be probably attributed to the
fact the DS2 is only trained on S1 condition data.

e For the MLP-based mapping methods, the feature adapta-
tion (FA) for the training data contribute to the improve-
ment of the recognition performance in the overlapping
speech scenarios. This can attribute to the reduction of
mismatch between the training and test data as shown in
Fig. 4.

e The mapping of the log MFBEs performs slightly bet-
ter than the mapping of MFCCs. This may suggest that
the highly-correlated and redundant information across
mel-filterbanks is helpful for learning the clean speech.
Further work needs to be done to understand it very well.

e MDSC+FA yields the best system with significant im-
provement on overlap speech conditions.

5. SUMMARY AND CONCLUSIONS

In this work, we investigated the MLP-based feature map-
ping approach to extract robust MFCCs for multi-channel
overlapping speaker speech recognition. We trained an MLP
to learn the mapping from log MFBEs of distant micro-
phones speech signal to log MFBEs of clean speech. We
studied two variants of MLP-based mapping, namely, com-
ponent independent mapping and vector-based mapping. Ex-
perimental studies on MONC corpus showed that MLP-
based mapping techniques yields a system that is signifi-
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Table 2: Recognition accuracies (as percentages) of different
systems for vector-based mapping studies. Upper half of the
table represents accuracies for no adaptation case and lower
half of the table represents accuracies for adaptation case.
The best system based upon average accuracy across all the
conditions is in boldface fonts.

S1  S12  S13  S123 | Average
MDSC 88.0 76.1 79.4 66.2 77.4
MDScCC 87.7 739 715 65.1 76.1
MDSC+FA | 88.6 789 838 725 80.9
MDSCC+FA | 882 775 826 712 79.9
DS2 89.0 57.0 67.7 485 65.6

MDSC 90.2 76.6 80.1 64.8 717.9
MDSCC 899 754 792 639 77.1
MDSC+FA | 89.7 819 84.6 758 83.0
MDSCC+FA | 89.7 804 84.1 740 82.1
DS2 90.3 593 695 50.2 67.3

cantly better (particularly for overlap condition) than the one
yielded through standard approach of adapting the acoustic
model on features extracted from DS beamformed speech
signal. The best performance was achieved by the vector-
based mapping approach.

In this work, the mapping was learned between distant
microphones signal and clean speech signal. The future
work in this direction is to detect speaker overlap and non-
overlap regions in multiparty meetings and train/adapt the
MLP directly using close-talking microphone speech as tar-
get speech. We will evaluate our method against and in com-
bination with more advanced beamforming/post-filtering mi-
crophone array processing techniques.
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