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118 route de Narbonne, 31062 Toulouse, France

phone: + (33) 5 6155 7201, fax: + (33) 5 6155 6258
email: {arias,obrecht,jfarinas}@irit.fr

web: http://www.irit.fr/-Equipe-SAMoVA-

ABSTRACT

This paper presents an approach for applying spectral clus-
tering to time series data. We define a novel similarity mea-
sure based on euclidean distance and temporal proximity be-
tween vectors. This metric is useful for conditioning ma-
trices needed to perform spectral clustering, and its applica-
tion leads to the detection of abrupt changes in a sequence
of vectors. It defines a temporal segmentation of the signal.
When the input to the algorithm is a speech signal, we fur-
ther process the segments and achieve their labeling in one
of three phonetic classes: silence, consonant or vowel. When
the input signal is a video stream, the algorithm detects scene
changes in the sequence of images. Our results are compared
against classic unsupervised and supervised techniques, and
evaluated with the phonetically labeled multi-language cor-
pus OGI-MLTS and the video database of the french video
indexing campaign ARGOS.

1. INTRODUCTION

Currently, automatic segmenting systems rely on the knowl-
edge of a signal’s statistical model, and when this is difficult
to define, some model-free approaches are proposed. Ex-
isting solutions are often based on complex assumptions as
ARMA transition measures, temporal or spectral autoregres-
sive modeling, support vector machine optimisations, dy-
namic programming, genetic algorithms or Bayes theory [1].
The time series segmentation we propose is a fast and sim-
ple unsupervised method built on the idea of euclidean and
temporal similarity among neighbor vectors and the spectral
clustering theory.

Our algorithm is performed in three steps. First, param-
eters localised in time are generated from the input signal.
These can be dominant colours in the case of video images
or cepstral coefficients computed from audio signals. Sec-
ond, we process these descriptors to obtain the affinity ma-
trix necessary for performing spectral clustering. Finally, we
transform this matrix to disclose stable temporal segments on
the input signal.

Temporal spectral matrix construction is inspired by the
fact that sequential speech/image parametric vectors can be
considered as nodes of a weighted graph [2]. Edges are
weighted according to the similarity and temporal order be-
tween points. Following this, similar vectors situated far
away in time on the sequence are considered ’different’, and
dissimilar vectors close in time are used to define segment
borders over the signal.

When the input to the algorithm is speech, we can use
some a priori knowledge of its acoustic nature to classify

the resulting segments. We know that speech is a contin-
uous signal composed from stationary and transitory units,
which we can loosely label as vowels, consonants or silences
(we associate voicing sounds to the ’vowel’ label, and un-
voicing segments to the ’consonant’ label, but it this is not
a formal association because vowel and consonantal quali-
ties come from some complex abstractions as dynamic be-
haviour). We perform this labeling step based in the low di-
mensional representation of the signal obtained after apply-
ing Kernel PCA to the representative vector of each discov-
ered segment. Augmenting MFCC or LPC parametrisation
can be useful in speech recognition systems, speaker veri-
fication, language identification applications and conceptual
modelling of audio documents [3]. This proposal is an evo-
lution of the system described in [4], but in this case we in-
corporate timing information in the spectral clustering based
signal segmentation.

When the algorithm process a video stream, scene change
detection is performed and the defined segments are grouped
to obtain consistent stories. In this case we do not know the
number of classes present in the document, so we try to dis-
cover this number automatically.

The paper is organized as follows. In Section 2 we recall
basic elements about spectral clustering and Kernel PCA. In
Section 3 we define the similarity measure used to transform
the original affinity matrix of spectral clustering into a matrix
from which we obtain a temporal segmentation. Section 4 is
devoted to explain the whole segmenting process and Sec-
tions 5 and 6 give results of different evaluations. Finally, in
Section 7 we present some conclusions and further work.

2. SPECTRAL ALGORITHMS

2.1 Spectral clustering

Spectral clustering methods have been mainly applied to im-
age segmentation, using image’s pixels to calculate an affin-
ity matrix A and its eigenvectors in different ways [5]. For
example, A could be constructed by fitting a radial basis func-
tion (RBF) kernel to the data, and normalised to take into ac-
count the different spread of several clusters. After diagonal-
ization of A, the first q eigenvectors are arranged as columns
in a matrix Y . The rows of this matrix are then treated as
q-dimensional vectors. Desired clustering are obtained after
performing k-means algorithm on these vectors.

The spectral clustering algorithm defined in [6] may be
explained informally considering the ’ideal’ case, where the
vectors are ordered according to the cluster they belong to,
and where the different clusters are considered infinitely far
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apart from each other. In this case, A is block diagonal and
each block Aii represents the intra-cluster affinities for cluster
i, i = 1, . . . ,q, with q = number of clusters to be discovered.
For ex., if q = 3 we obtain the next representation for A.

A =




A11 0 0

0 A22 0

0 0 A33


 (1)

Since A is block diagonal, its eigenvalues and eigenvec-
tors are the union of the eigenvalues and eigenvectors of its
blocks padded appropriately with zeros. If we take the prin-
cipal normalized eigenvector of each block Aii, we will have
the n×q matrix Y .

Y =




Y 1

Y 2

Y 3



 =




v
(1)
1 0 0

0 v
(2)
1 0

0 0 v
(3)
1


 (2)

Each row Yi correspond obviously to the true clustering
of original data. In the general case there are not infinite
distances between clusters, but we expect to recover a stable
cluster configuration whether a large eigengap between the
retained and discarded eigenvalues exists.

2.2 Kernel Principal Component Analysis

Kernel PCA performs principal component analysis in fea-
ture space by the mean of a kernel function κ such that
κ(yi,y j) =

〈
Φ(yi) ·Φ(y j)

〉
[7]. Kernel PCA finds a subspace

that seems to be the result of an information extraction pro-
cess, helped by the implicit non-linear transformationΦ(y).

Eigenvectors up in feature space lie in the span of

α
p
i Φ(yi). The weights α

p
i are obtained from the relationship

between eigenvalues and eigenvectors of kernel and covari-
ance matrices of centered feature space data. Projections of
test vectorsΦ(y) onto principal eigenvectors in feature space
are computed using a kernel function:

Pup = u′pΦ(y) =

〈
n

∑
i=1

α
p
i Φ(yi),Φ(y)

〉
=

n

∑
i=1

α
p
i κ(yi,y) (3)

3. EUCLIDEAN/TEMPORAL SIMILARITY
MEASURE

We find inspiration in the ideal case of spectral clustering de-
scribed in eq. 2 to take into account temporal information be-
tween vectors in times series and discard some components
far from the main diagonal of the original affinity matrix.

After computing the affinity matrix A of a sequence X =
{xi, i = 1, . . . ,n} with a RBF kernel, we analyze the dissim-
ilarity between each diagonal element aii of the matrix and
their forward neighbours [ai,i+1,ai,i+2,ai,n] i = 1, . . . ,n.

When the difference between aii and a neighbour ai j

is superior to a predefined threshold ε , the rest of the el-
ements ai, j+1, . . . ,ain are set to 0 (see figure 1). In this
manner we isolate a ’pseudo stable’ temporal segment Si =
[xi,xi+1, . . . ,x j] from the diagonal of A, associated to the ele-
ment xi.

The temporal spectral clustering matrix Ã is defined as :

Figure 1: Metric for the modification of the affinity matrix.
Starting from the diagonal element aii, if the difference re-
specting a forward neighbour ai,i+ j is superior to a thresh-
old, the rest of the sequence is considered ’infinitely’ far from
aii (frames filled in black in the figure).

if i < k

ãik =





exp

−
||xi−xk ||

2

2σ2 if xk ∈ Si

0 otherwise

ãki = ãik

(4)

The matrix Ã is a block diagonal matrix, consisting of p
blocks. Figure 2 shows a standard affinity matrix computed
using a sequence of cepstral speech vectors. It also shows
the diagonal symmetric blocks formed in the corresponding

temporal spectral clustering matrix. Eigenvectors of Ã iden-
tify stable temporal units in the input sequence, as shown in
figure 3.

Indeed, temporal segmentation is achieved with the diag-

onalization of Ã, normalizing and thresholding its principal
eigenvectors.

Scaling parameters σ and ε control how the affinity is
measured between vectors. They are chosen using cross val-
idation.

4. SEGMENTING ALGORITHM

We obtain a temporal segmentation from Ã. Consider that the

rank of Ã provides the number of potential clusters in the ma-

trix (rank(Ã) ≥ q). We extract eigenvectors of Ã associated
to non-zero eigenvalues and superior to a certain threshold,
because spectral clustering theory shows that only the q most
important eigenvalues of the affinity matrix are relevant for
clustering.

Each eigenvector defines a temporal segment Sq. The
union of these boundaries give the final temporal segmen-
tation. The relation among the signal and its temporal seg-
ments is shown in fig. 4. Transient periods in the signal
are registered as a chain of short segments. We fusion these
small units to create transitory segments.
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Figure 2: Spectral clustering matrix of speech vectors. Affin-
ity matrix A (top) computed with a typical spectral clustering

algorithm. Modified matrix Ã (bottom) computed with tem-
poral spectral clustering.

In conclusion, the algorithm consists of the following
steps:

1. Parametrization of the sequence (for example, cesptral
coefficients for audio frames or histograms for images).

2. Affinity matrix A construction using a RBF function with
parameter σ .

3. Modification of A to isolate its diagonal blocks using ε .

4. Diagonalization of Ã. Normalization and thresholding of
the eigenvectors corresponding to non zero eigenvalues.

5. Association of each eigenvector to a temporal segment in
the signal.

6. Smoothing phase to fusion very short segments.

Once we define the signal temporal segmentation, we can
choose a vector representing each segment and perform their
labeling according to the contents and segment classes we
are dealing with. Further clustering can be done with spectral
clustering [8], k-means clustering [9] or Kernel PCA [10].

5. SPEECH EXPERIMENTS

5.1 The OGI-MLTS corpus

The speech database OGI-MLTS is a reference in the lan-
guage identification community [11]. The corpus consists
of spontaneous telephonic speech presented in sequences of
around 45 seconds length sampled at 8 kHz. It is phonetically
labeled by experts following the CSLU rules [12] .

We use a six languages subset of the OGI-MLTS
database to perform tests: English, German, Hindi, Man-
darin, Japanese and Spanish. For testing purposes we use
eight files per language which represents almost 40 minutes
of speech. We perform cepstral parametrisation of the cor-
pus using 14 coefficients plus energy, derivatives and accel-
eration. The signal is decomposed into 16 ms frames with a
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Figure 3: First eigenvectors of Ã. The nonzero interval of
each eigenvector defines a temporal segment.

Figure 4: Speech signal segmented with the temporal spec-
tral clustering algorithm (before smoothing).

frame overlap of 12.5 ms. Cepstral features are normalized
by cepstral subtractions.

System evaluations are made using one tool issued from
NIST campaign for audio indexing. This tool calculates the
accuracy of raw audio segmentation.

5.2 Temporal segmentation and SCV labeling

Using the segmenting algorithm of Section 4, we define tem-
poral sub-phonetic segments in speech. We perform Ker-
nel PCA in vectors identifying each segment to obtain a 3-
dimensional representation of data. In this space we can
further apply k-means algorithm. As a first labelling study,
we propose to detect the speech most important phonetic
classes: silences, consonants and vowels. After applying
the 3-means algorithm, phonetic identification of the clus-
ters is achieved automatically based in the mean energy of
each cluster. Highest energy correspond to vowel (V) clus-
ter, lowest energy is associated to silences (S) and consonant
(C) cluster is in between.

In figure 5 we show an example of the SCV labeling
in the clustering space. The low dimensional embedding
of Kernel PCA orders silences, consonants and vowels in a
smooth and separable configuration. We use a RBF kernel
with σ = 3.

We evaluate our system against OGI manual segmenta-
tion and labeling (see Table 1). Three algorithms are im-
plemented for comparison purposes: two unsupervised ap-
proaches and one supervised system.

Baseline system [3] uses the forward-backward diver-
gence (fbd) algorithm for temporal segmentation. Fbd algo-
rithm looks for changes in the auto-regressive model of two
shifted sliding windows to define temporal borders in the sig-
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Figure 5: Low dimensional embedding with the three most
relevant components of Kernel PCA. One vector (typically
the vector of the middle of the segment) representing the seg-
ment it belongs is used to perform the embedding. Phonetic
classes (SCV) are grouped with k-means algorithm.

nal. It utilizes the energy in spectral band of 0.35-1kHz to
classify the segments [13].

The second baseline system [4] uses also fbd algorithm
for temporal segmentation, but it utilizes a low dimensional
projection of the vectors representing segments obtained with
standard spectral clustering for the SCV labeling.

A supervised HMM system is implemented as a refer-
ence for unsupervised approaches. HMM system is trained
with a different 20 minutes subset of the speech corpus, and it
is tested with the same files than the unsupervised systems. It
consists of trigram (three states connected from left to right)
phoneme models : silence, consonant and vowel. Each state
is modeled with an eight-component gaussian mixture. Its
accuracy is 81.22%, and is considered as a reference for au-
tomatic systems. The advantage of our proposal is that if an
unknown language is incorporated to the corpus, we do not
need a training phase as the HMM system will do.

Table 1: Accuracy of segmentation and SCV labeling of three
unsupervised systems.

System Accuracy

F-b divergence + 0.35-1kHz energy 72.66 %
F-b divergence + Standard spectral clustering 73.14 %
Temporal spectral clustering + Kernel PCA 74.66 %

6. VIDEO EXPERIMENTS

6.1 The ARGOS corpus

ARGOS evaluation campaign [14] is aimed to develop re-
sources for a benchmarking of video content analysis. Their
corpus consists of three video sources: TV news journals,
documentaries and video surveillance scenes. For the system
tests we use 2 hours of TV news, which are files encoded in
MPG-1 format with a resolution of 352 x 288 pixels.

The corpus annotation is fulfilled according to the pro-
duction rules. We compare the performance of our segment-

Figure 6: Temporal segmentation of speech and labeling of
3 phonetic classes (SVC). The first row shows labels from
manual OGI labeling and second row shows our automatic
unsupervised labeling.

ing algorithm against the shot boundary detection ground
truth provided with the corpus.

In this case, input videos are transformed into sequences
of images. Each image is then represented with nine param-
eters: average luminance, first and second HSV dominant
colors, contrast and movement quantity.

6.2 Temporal segmentation and grouping

We use the algorithm described in Section 4 to perform
temporal segmentation in image sequences. According to
the evaluation metric, transient segments in video represent
plane transitions so they are skipped for computing the seg-
mentation accuracy. Then, ’holes’ in the video timeline are
tolerated. Results of temporal segmentation using ARGOS
corpus are presented in Table 2.

Table 2: Segmentation accuracy for different TV news jour-
nals of the ARGOS database.

Program Accuracy

INAO1 - 35 mins 55 %
INA02 - 35 mins 61 %
SFR01 - 30 mins 58 %
INA06 - 35 mins 62 %

For the grouping step of the algorithm, we do not know
the number of classes representing the key images extracted
to represent the segments. We then run the cluster detecting
method described in [8], which is based in a modified version
of the spectral clustering algorithm [6]. The main idea is to
consider that the low dimensional representation issued from
spectral clustering should not be normalized. Considering
this, a modified version of k-means clustering based on Ma-
halanobis metric will discover the clusters. An example of
this algorithm running on key images representing segments
is shown in figure 7.

We can put together the segments belonging to the same
class to construct homogeneous video stories. In the exam-
ple shown in figure 8 we separate different topics from a TV
journal.

7. CONCLUSIONS AND FURTHER WORK

The new temporal segmenting algorithm presented in this pa-
per is derived from a modification on the known spectral
clustering procedures and is aimed to process multimedia
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Figure 7: Plot of eigenvectors representing stories in 3D
clustering space.

Figure 8: Result of video segmentation and clustering.
Detected video segments with similar characteristics are
grouped to construct homogeneous stories.

time series. The algorithm is unsupervised, with only two
parameters to define.

In the case of speech processing, phonetic class labeling
is also performed. Our test corpus consist of conversational
and multi-language speech. We believe that applications of
this kind are necessary to extract information that can be used
in tasks ranging from prosodic analysis to language identifi-
cation.

Tested with video frames, the segmenting and grouping
algorithm decomposes TV programs into consistent stories.

Spectral methods are suitable for practical tasks in mul-
timedia processing. Future research directions will exploit
eigenvectors extracted from sequences for comparison pur-
poses.
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