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ABSTRACT 
Even if the speaker recognition field is very dynamic, few 
studies concern the constraints linked to the use of a speaker 
recognition system inside a professional telecommunication 
network.  This paper deals with this problem and proposes 
some adaptation of such system in the focus of a real world 
network monitoring application. This work is specifically 
dedicated to the front-end. Both real-time constraints and 
distributed architectures are investigated. The signal acquisi-
tion takes place on a mobile terminal, while the speaker veri-
fication process is performed on a remote server. We propose 
a frame-by-frame on-line processing for feature extraction, 
frame selection and normalization. The links between the 
network speech coder and the speaker recognition system are 
also investigated, for both the ETSI TETRA speech codec (at 
4600 bit/sec) and the NATO STANAG 4591 (at 2400 bit/sec). 
The proposed solutions are compared with a classical uncon-
strained front-end (off-line processing).  
 

1. INTRODUCTION 

There is a growing interest for speaker recognition technol-
ogy in the context of professional and security applications. 
Voice authentication can be used in various types of applica-
tions: secured access to telecom services, entrance control 
systems, forensic applications… In this paper, we focus on 
the security reinforcement of a professional communication 
network by adding an on-line vocal-based identity monitor-
ing.  This application allows assessing a nominal use of the 
mobile terminals in the network. As soon as a network intru-
sion is detected, a human operator can be alerted in order to 
check the user’s identity, or to inhibit the corresponding ter-
minal. This type of functionality is particularly well-suited 
for professional networks used by security and rescue forces. 
In the context of real scenarios, on-line processing and short-
delay decision are required in order to quickly react to an 
impostor attack. The specificities of professional communi-
cation networks have to be taken into consideration, includ-
ing the speech coding solutions and the distributed architec-
ture of the processing (cf. figure 1). In this study, we are con-
sidering different configurations of the front-end processing. 
A first configuration consists in the extraction of features on 
a remote platform either from the decoded speech signals or 

through the conversion of internal speech coder parameters. 
An alternative solution is based on the transmission of opti-
mised parameters directly extracted on the terminal, as in-
spired by the ETSI Aurora standard [1] designed for distrib-
uted speech recognition applications. In this study, we are 
considering the following standardised vocoders: TETRA [2] 
and MELP [3]. Both coders are using linear prediction of 
speech allowing simple extraction of Cepstrum features from 
linear prediction coefficients (LPCC).  

 

Figure 1 – Professional communication network monitoring. 

For a real-time, on-line, monitoring of the communications, it 
is necessary to have a specific implementation of the speaker 
verification system when compared to a classical speaker 
recognition solution, designed for off-line processing. This is 
particularly relevant to the front-end processing and the scor-
ing stage. 
This paper introduces a complete real-time compliant front-
end based on the ETSI Aurora standard. The speaker verifi-
cation baseline system is described in section-2. The refer-
ence front-end is detailed in section-3. Section-4 deals with 
the communication network constraints. The on-line real-
time compliant front-end specifications are detailed in sec-
tion-5. And finally some experiments and results are pro-
vided in section-6, followed by some conclusive remarks. 

2. THE SPEAKER VERIFICATION SYSTEM 

The speaker recognition system is developed using 
ALIZE/SpeakerDet1 toolkit developed by the LIA [4,5]. It is 
based on statistical modeling using Gaussian Mixture Model 
(GMM) [6]. A Universal Background Model (UBM) is esti-
mated via the EM algorithm, using several hours of recorded 

                                                           
1 http://mistral.univ-avignon.fr 
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data. As it is done off-line, there is no need for a real-time 
front-end processing. Speaker models are adapted from the 
UBM via a Maximum A-Posteriori (MAP) adaptation proce-
dure [6]. The UBM and speaker models are composed of 512 
Gaussian components with diagonal covariance matrices. No 
score normalization is performed in the presented results. 

3. REFERENCE FRONT END PROCESSING 

As in most of state-of-the-art speaker recognition systems, 
we are using cepstral analysis of the speech signal for the 
feature extraction step, as depicted in figure 2. A preliminary 
frame selection step based on Voice Activity Detection 
(VAD) is used to discard useless frames when detected as 
silence or noise [7]. The VAD is based on statistical model-
ling of the energy distribution. Finally a feature normaliza-
tion step based on Cepstral Mean and Variance Normaliza-
tion (CMVN) is used to remove some channel effects. 

Figure 2 - Structure of speaker recognition front-end 

These three steps are most of the time based on a file entry 
and use the whole utterance to estimate the needed parame-
ters. 

3.1 The ETSI Aurora standard 

The ETSI Aurora standard was originally designed for Dis-
tributed Speech Recognition (DSR) systems, meaning that 
the processing is distributed between the terminal and the 
network. The terminal performs the feature extraction and the 
associated compression processes. The resulting compressed 
features are then transmitted through the network to a remote 
back-end recognizer. Performance degradations resulting 
from the transcoding on the voice channel are therefore re-
moved. The Aurora features consist of 13 static Mel-scaled 
filter-bank derived cepstral coefficients and a log-energy 
coefficient, computed every 10-ms frame. The feature vector 
is then extended by adding first and second derivatives of 

cepstral coefficients. The Aurora quantization stage is then 
applied to the cepstral parameters. 

3.2 Frame Selection 

The frame selection step discards useless frames - such as 
noise or weak level speech - since they significantly decrease 
the speaker recognition performance [7]. A classical energy-
based frame pruning is applied as a VAD. It is based on a 
3-Gaussian modelling of the frame energy distribution (this 
modelling is done file by file), and the selected frames are 
the one corresponding to the Gaussian with the highest 
mean value. 

3.3 Feature Normalization 

The parameters are finally normalized, file by file, using a 
standard cepstral mean subtraction and variance normaliza-
tion. It reduces the stationary convolution noises due to the 
channel and the mismatch between training and testing 
conditions. The best recognition results are obtained when 
mean and variance parameters are averaged along a whole 
utterance. 

4.  COMMUNICATION NETWORK CONSTRAINTS 

Within the framework of professional telecommunication 
networks it is necessary to take into account the whole 
transmission chain. The architecture of a typical network is 
described in figure 3. 

 
Figure 3 – Input signal taken from different points inside the net-

work architecture 

The feature extraction process can take place at three differ-
ent locations in the network. They can be extracted on the 
terminal (point 1 in figure 3). But in this case, they must be 
encoded and transmitted as in the Aurora standard, which is 
bandwidth consuming since simultaneous encoded speech 
for communication should also be transmitted. However, this 
configuration will be considered as the reference configura-
tion in terms of performance, since the original speech signal 
is used. The standard configuration (point 3 in figure 3) will 
consist in extracting the front-end parameters from the re-
synthesized speech at the output of the low-bit rate speech 
coded used for communication. And finally, an optimised 
configuration (point 2 in figure 3), which does not require the 
re-synthesized speech, will perform the feature extraction in 
the compressed domain from the transmitted bit stream. As 
the considered low bit-rate speech coders (TETRA and 
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MELP) are based on Linear Prediction Analysis, it is possible 
to use directly the prediction coefficients for speaker recogni-
tion using a modified measure, like proposed in [8]. In our 
work, we simply take advantage of the available LPC-related 
coefficients (LSP/LSF) to extract LPC-based Cepstral Coef-
ficients (LPCC) in order to minimize the differences with a 
classical state-of-the-art speaker recognition front-end. The 
following equation (1) gives the computation of LPCC from 
the Linear Prediction coefficients resulting from the dequan-
tization stage of the speech decoder. 
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5. APPLICATION CONSTRAINED FRONT-END 

This section describes the proposed modifications in order to 
achieve on-line processing. It mainly concerns the Voice 
Activity Detection, the Feature Normalization process and 
the Feature Extraction itself. The work is done in the focus 
of a professional telephonic network, using the reference 
ETSI Aurora standard, and the TETRA and MELP coders.  

5.1 Voice Activity Detection 

As seen in section-3, the reference speaker recognition sys-
tem relies on an energy-based frame selection process, which 
shows a drastic impact on the system performance [7]. This 
process is usually based on a file by file GMM modelling of 
the frame-energy distribution, associated with a decision 
process. In our application, this file-based processing is no 
more possible and the energy-based frame selection should 
be done on a frame-by-frame basis. We propose to use the 
VAD which is part of the ETSI Aurora standard, since it is 
easily accessible as a reference VAD, and also provides an 
on-line decision for each frame, within a reasonable delay (6-
frame buffer) for the targeted applications.  
The Aurora VAD is based on the energy acceleration meas-
ured on different subbands of the spectrum: across the 
whole spectrum and over a sub-region most likely to con-
tain the fundamental pitch. Spectral variance measure is 
also computed on the lower half of the spectrum. The class 
information decision uses Zero Crossing Rate, VAD deci-
sion and threshold on upperband energy to determine voic-
ing class. More details can be found in [1]. 
A preliminary experiment shows that the Aurora VAD selects 
more frames (80 %) than the classical off-line selection proc-
ess (50 %). Since the speaker recognition performances are 
significantly affected by the inclusion of non-speech or low 
energized frames, we use the voicing level information (un-
voiced, mixed-voiced, and fully-voiced) provided by the 
Aurora standard in order to improve the selection process. 
This is in accordance with previous results showing the pre-
dominance of voiced frames on unvoiced frames for the 
speaker recognition task. This voicing information is used in 

order to reduce the VAD selected frames to a fully-voiced 
subset. 

5.2 Feature Cepstral Mean and Variance Normalization  

For each dimension of the feature space, the coefficients are 
normalized using a CMVN function to obtain a zero-mean 
and a unit-variance distribution of the parameters. This nor-
malization requires both mean and variance estimators which 
need to be robustly estimated. In the reference front-end, as 
the recordings are long enough, these estimators are obtained 
from the entire file. This file-based solution does not fit the 
targeted on-line constraints. Some sliding window-based 
solutions, have been shown to perform as well or even 
slightly better than the file-based CMVN [9, 10].  
Following the similar approach, we have implemented a 
frame normalization based on a first-order forgetting process 
[10, 11]. This procedure is using a parameter initialization 
window of N frames (only the frames selected by the VAD 
are taken into account). The frames inside this window are 
normalized only when the window is full, after this step the 
normalization is done frame by frame, without any delay. 
The normalization parameters are then continuously updated 
during the normalization process using the following equa-
tions (2, 3): 

²)1(²ˆ²ˆ 1 iii σβσβσ −+= −  (2) 

iii µβµβµ )1(ˆˆ 1 −+= −        (3) 

β  = 1 for frame index i: [0;N] 

β  = (window size – 1) / window size otherwise 

5.3 TETRA and MELP parameters 

In this section, we evaluate the LPCC parameters directly 
extracted from internal speech coder parameters. We are con-
sidering for this evaluation the ETSI TETRA speech coder 
and the NATO STANAG-4591 MELP coder, since they are 
widely used in professional and military coders. We do not 
consider the channel effects in this study. 
5.3.1 TETRA coder 
The Terrestrial Trunked Radio (TETRA) coder is a widely 
used speech coder in Professional and Private Mobile Radio 
networks (PMR). The bit-rate is 4.6 kbit/s. It is based on a 
10th-order LPC-based analysis. Each frame is computed 
every 35 ms, and linear interpolation is used to generate a 
sub-frame every 7.5 ms. 
5.3.2 MELP coder  
The NATO STANAG-4591 Mixed Excitation Linear Predic-
tion (MELP) coder is a 2.4 kbit/s vocoder. It is considered as 
a state-of-the-art coder for low-bit rate applications and 
therefore addresses the requirements of professional and 
military networks. The MELP coder is also based on the 
traditional LPC model. The analysis is based on 22.5 ms 
frames, and LPC interpolation is performed for each pitch 
period. 
For both TETRA and MELP coders, the LPCC cepstral pa-
rameters are extracted directly from the encoded LPC predic-
tion coefficients as described in section 4 (equation 1). 
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Figure 4 – DET curves for Aurora (DCF: 1.91, EER: 3.30) and En-
ergy-based VAD (DCF: 2.66 , EER: 4.60). 

6. DATABASE AND EXPERIMENTS 

This section presents the database used for setting up all the 
experiments presented bellow.  

6.1 BREF database  

The French database BREF [12] is used for the experiments. 
BREF is composed of read sentences, recorded in a quiet 
environment. The original 16 KHz recordings are down-
sampled at 8 kHz in order to be compliant with the tele-
phone bandwidth. The UBM training is done on a first sub-
set of 40 speakers which consist in a 8 hours dataset before 
the frame selection step. A second set of 40 speakers (20 
male and 20 female) is used for the target speakers. Finally, 
a third set composed by 35 other speakers is used for the 
impostor tests. No cross gender tests are performed, but one 
should note that gender detection could easily be included. 
This setup gives a total of about 8 thousand true target trials 
and about 90 thousands impostor trials. In order to be as 
close as possible to the application constraints, the training 
speech segment have a duration of 1 minute and 8 seconds 
duration files are used for the tests. The performance is 
evaluated through classical DET performance curves. Equal 
Error Rate values (False Acceptance equals False Rejec-
tion) and scores in terms of NIST Decision Cost Function 
(DCF) are also provided. 

6.2 VAD experiments 

This section evaluates the proposed Aurora VAD, using fully-
voiced class information.  and. We use the feature extraction 
process as described in section 3. The performance of the 
proposed VAD are provided in figure 4 together with the 
results of the reference file-based VAD (denoted energy-
based VAD), for comparison purpose. 
The best performance is obtained with the Aurora-based 
frame-by-frame VAD, which allows on-line processing. Us-
ing the “fully-voiced class” Aurora VAD, a 28 % relative  

Figure 5 – DET curves for 150 and 300 frames initialization win-
dow size and the reference (file processing mode) 

improvement is achieved for both EER and DCF evaluation 
measures. 

6.3 Normalization experiments  

In this section, we use the on-line normalization procedure 
presented in section 5.2 to process both the speaker training 
and the test data, while an off-line processing is still used for 
the UBM training. Two different experiments with two dif-
ferent initialization window sizes (150 and 300 frames) are 
performed. 
Figure 5 presents the results for the file-based normalization 
and for the frame-by-frame normalization, with 150 and 300 
frames initialization windows. The results obtained with a 
300 frames are very close to the ones obtained with the file-
based normalization mode (an EER of 3.49% for the one-
line processing to be compared with 3.30% for the file-
based solution). 
Howether, as the test segment duration is only 8 seconds, 
which gives in average about 500 VAD-selected frames, the 
300 initialization window contains 60% of the total of se-
lected frames. 

6.4 TETRA/MELP compressed domain experiments 

In this section, we evaluate the potential use of acoustic pa-
rameters extracted from the compressed domain, i.e. directly 
from the coder parameters. For all the experiments based on 
internal speech coder parameters, all the audio recordings 
(UBM and speaker training data, and testing data) are en-
coded using the TETRA and MELP coders. The experiments 
are done using LPCC cepstral parameters as described in 
section 4 and the reference VAD described in section 3. It 
should be noted that there is no Mel-frequency scaling in the 
LPCC extraction process. For comparison purpose, we also 
propose several experiments where the acoustic parameters 
are extracted from the coder bit-stream after decoding the 
speech (point 3 in figure 3). In this case the cepstral analysis 
is performed on the re-synthesized speech using the reference 
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front-end described in section 2.1. In order to evaluate the 
impact of the quantization losses for both coders, we propose 
an experiment without including the quantization stage for 
both coders. Finally, the baseline performance is provided for 
comparison, using directly the clean speech and the reference 
front-end (point 1 in figure 3). The results are presented in 
Table 1.  
First we could notice that the MELP coder outperforms the 
TETRA coder in terms of DCF and EER when the features 
are extracted from the re-synthesized speech at the output of 
the decoders. These results are in discordance with the per-
formance obtained in terms of speech quality restitution. In 
fact, the PESQ measure (Perceptual Evaluation of Speech 
Quality) averaged on the whole test database is superior for 
the TETRA coder (2.953) than for the MELP (2.945). As the 
internal LPC analysis is the same for both coders results are 
equivalent for MELP and TETRA coders when extracting 
LPCC directly from the LPC parameters. Looking to both 
results, we could make the assumption that the MELP re-
synthesis adds useful information for cepstral analysis.  
Secondly, the quantization loss is of 18 % relative for both 
DCF and EER (about 4.5% of EER before the quantization 
step to be compared with 5.5% of EER after the quantiza-
tion). 
Lastly, when using the quantized coder parameters (level 2 in 
the network architecture), the relative loss compared to the 
clean speech is abut 20% in terms of EER for both coders 
(4.58% of EER for the clean speech and about 5.5% for the 
coder-based acoustic parameters). 

7. DISCUSSION AND FUTURE WORK 

In this work, we focused on the constraints linked the use of 
speaker recognition inside a professional telecommunication 
network. Our main interest was the front-end processing un-
der the real-time online constraints. We have proposed a 
complete speaker verification front-end for on-line process-
ing. Three points were investigated: the VAD, the frame 
normalization process and the acoustic parameter extraction 
inside the telecommunication network architecture. 
The proposed Aurora-based frame-by-frame VAD gives a 28 
% improvement on recognition results compared to a stan-
dard energy-based VAD. The introduced normalization pro-
cedure performs nearly the same as file-based normalization.  
Moreover we have analysed the impact of different feature 
extraction on decoded speech and in the coder compressed 
domain. The cepstral feature extraction based on the LPC 
analysis of the TETRA coder performs the best on TETRA 
coded speech, whereas extracting feature on decoded speech 
performs better for MELP coded speech. These results en-
courage the set up of a real-time on-line speaker recognition 
process with a negligible lost in terms of speaker recognition 
performance.  
Future works would be more focused on a decision step suit-
able for a telecommunication network monitoring applica-
tion. Particularly, determining when a robust decision could 
be done, taking into account the amount of buffered frames 
as well as the quality of the accumulated data (for example in 
terms on SNR) is of a critical importance.  

 Table 1 – Results in terms of DCF and EER for recognition ex-
periments using different feature extraction methods (number in 

brackets refers to figure 3). 
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Experiment DCF EER 

LPCC Tetra (2) 3.55 5.57 

LPCC Melp (2) 3.55 5.58 

Aurora front-end on Tetra decoded speech 
(3) 

3.84 7.29 

Aurora front-end on Melp decoded speech 
(3) 

2.94 5.20 

Aurora front-end clean speech (1) 2.78 4.58 

LPCC Tetra without quantization 2.9 4.55 

LPPC Melp without quantization 3 4.56 
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