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ABSTRACT

In multiuser detection, the set of users active at any time may
be unknown to the receiver. In these conditions, optimum re-
ception consists of detecting simultaneously the set of active
users and their data, problem that can be solved exactly by
applying random-set theory (RST) and Bayesian recursions
(BR). However, implementation of optimum receivers may
be limited by their complexity, which grows exponentially
with the number of potential users. In this paper we exam-
ine three strategies leading to reduced-complexity receivers.
In particular, we show how a simple approximation of BRs
enables the use of Sphere Detection (SD) algorithm, which
exhibits satisfactory performance with limited complexity.

1. INTRODUCTION

In multiuser detection (MUD), an important issue is that the
set of users that are active at a given time may be unknown
to the receiver. A simple solution to the problem of detect-
ing data in a multiuser system with unknown number of ac-
tive users consists of a two-step procedure, where multiuser
detection is preceded by active-user identification [1]. How-
ever, the procedure in [1] can be applied for quasi-static net-
work, wherein the number of users do not change often. In
[2], the optimum solution to the problem of jointly estimat-
ing the set of active user and possibly their data is described:
instead of proceeding in two steps, the number of active users
and data are detected simultaneously. Indeed, modelling the
set of active users as a random finite set (RFS) [3] allows
the description of the number of users and their parameters
as a single parameter set. Several scenarios can be consid-
ered: in the simplest among them, no a priori information
about user activity is available, and maximum likelihood de-
tection is used. When a priori information is available in the
form of the probability that a user is active, maximum a pos-
teriori (MAP) detection can be performed. If, in addition, a
dynamic model is available for users logging in and out of
the system, the use of random-set theory allows one to de-
scribe the evolution of the a posteriori probability of the set
of active users and their data. In order to apply to real sys-
tems the concepts described above, it is necessary to design
receivers whose performance is close to optimum, while re-
taining a reasonable complexity. The goal of this paper is to
present techniques allowing a low complexity approximation
of BRs. Three such techniques are considered. The first two
are heuristic approximations of BRs and of the subsequent
detection problem, while the third, based on what we call
a zero-order approximation of BRs, applies the Sphere De-
tection (SD) algorithm. This paper is organized as follows.
Section 2 describes the signal model. Section 3 introduces

two heuristic estimation procedures aimed at approximating
the optimum detector. Section 4 briefly describes the SD al-
gorithm and how it can be applied to our problem. Numerical
results are presented in Section 5, and conclusions are drawn
in Section 6.

2. SIGNAL MODEL

In this section we review the MUD approach based on
random-set theory (RST), as first advocated in [2].
We assume a random number of users transmitting digital
data over a common channel. We denote by K the maximum

number of active users, and by s(x(k)
t ) the signal transmit-

ted at discrete time t by the kth user, if active. Each signal
has in it a number of known parameters, reflected by a deter-
ministic function s(·), and a number of random parameters,

summarized by x(k)
t . The observed signal at time t, denoted

yt , includes s(x(k)
t ), the signals generated by the users active

at t, which are in a random number, and stationary random
noise zt . Thus,

yt = ∑
k

s(x(k)
t )+zt (1)

Let Xt denote the random-set encapsulating what is unknown
about the active users. We write

Xt =
K⋃

k=1

X
(k)
t (2)

where X
(k)
t is the singleton-or-empty set

X
(k)
t =

{
{x(k)

t } = {[k,x(k)
t ]T} if user k is active at time t

/0 otherwise
(3)

Here, {x(k)
t } is a singleton whose element is the vector con-

taining the user index k and an unknown (possibly random)

parameter x(k)
t . The latter takes values in the finite set M,

with cardinality |M|= M, representing the digital data trans-
mitted by user k at time t. Moreover, if |M| = 1 the system
will operate in trained fashion. In this case the goal of our
algorithm will be the estimation of the random set of active
users.
Under the assumption of direct-sequence code-division
multiple-access (DS-CDMA) with signature sequences of
length N ≥ K, and of zero-mean additive white Gaussian
noise with power spectral density N0/2, we can write, for
the sufficient statistics of the received signal at time t,

yt = SAxt +zt (4)
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where yt is the N-dimensional column vector of the obser-
vations, S � [s1, . . . ,sK ] is a N ×K matrix whose columns
contain the signature sequences of all the potential K users,
A is the K ×K diagonal matrix of the user amplitudes, and
xt = xt(Xt) is a mapping between the RFS Xt and a K-vector
whose kth entry is defined as

{xt}k =

{
0 if X

(k)
t = /0

x(k)
t otherwise

(5)

Assuming further that the system is power-controlled, i.e.,
A = IK , where IK denotes the K-dimensional identity ma-
trix, we obtain

fYt |Xt (yt |Xt) =
1√
πN0

exp{−‖yt −Sxt‖2/N0} (6)

Consider now a dynamic model for the users logging in and
out of a multiuser communication system [2]. Denote by
Xt the random set whose elements are the active users with
their data at time t, and consider its evolution with time. We
assume that from t−1 to t some new users log in, while some
old users log out. We write

Xt = St ∪Nt (7)

where St is the set of surviving users still active from t − 1,
and Nt is the set of new users becoming active at t. The con-
dition Nt ∩Xt−1 = /0 is forced, because a user ceasing trans-
mission at time t −1 cannot reenter the set of active users at
time t.

Suppose that there are k active users at t −1, i.e. Xt−1 =⋃k
j=1 X

( j)
t−1. Then we may write, for the set of surviving users,

St =
k⋃

i=1

S
(i)
t (8)

where S
(i)
t denotes either an empty set (if user i has become

inactive) or the singleton {x(i)
t } (user i is still active). Let μ

denote the ”persistence” probability, i.e., the probability that
a user survives from t −1 to t. We obtain, for the conditional
probability of St given that Xt−1 = B:

fSt |Xt−1
(C | B) =

{
M−|C|μ |C|(1−μ)|B|−|C|, C ⊆ B
0, C � B

(9)
Denote α the probability that a new user arises. Then, a rea-
sonable model is

fNt |Xt−1
(C |B)=

{
M−|C|α |C|(1−α)K−|B|−|C|, C∩B = /0
0, C∩B �= /0

(10)

Finally, by assuming that births and deaths of users are
conditionally independent given Xt−1 = B, the pdf of the
union of the independent random sets St and Nt is obtained
from the generalized convolution [3]

fXt |Xt−1
(C | B) = ∑

W⊆C

fSt |Xt−1
(W | B) fNt |Xt−1

(C\W | B)

= fSt |Xt−1
(C∩B) fNt |Xt−1

(C\ (C∩B))(11)

Now, assume that two functions are available to model
the system. One models the observation, and has the form of
the probability density function f (yt | Xt) of the observation
yt given the realization of the random set Xt (eq. (6)). The
other one is a Markov model for the evolution of Xt with
time, i.e., the conditional density f (Xt | Xt−1) (eq. (11)).
These two functions can be used as the ingredients of Bayes
recursions for countable sets: denoting y1:t � (y1, . . . ,yt) the
channel-output observations from time 1 to time t, we have
for the conditional a posteriori densities

f (Xt+1 | y1:t) = ∑
Xt

f (Xt+1 | Xt) f (Xt | y1:t) (12)

f (Xt+1 | y1:t+1) ∝ f (Xt+1 | y1:t) f (yt+1 | Xt+1) (13)

Thus, the optimum causal detector for Xt+1 is

X̂t+1 = argmax
Xt+1

f (Xt+1 | y1:t+1) (14)

Eq. (12) predicts Xt+1 on the basis of its past and of the ob-
servations up to time t, while (13) corrects this prediction by
accounting for the additional observation made at time t +1.
Notice, in particular, that the maximization of (12) with re-
spect to Xt+1 yields the best prediction of Xt+1 based on the
observations y1:t .
In [2], the above recursion and the detector in (14) are con-
sidered as the optimal solution for the causal estimation of
Xt . The problem of (12)-(14) is that they require a complex-
ity for the calculation of (12) and the evaluation of the maxi-
mum in (14) which grows exponentially in K. However, one
can exploit the structure of the problem to further simplify
the detection process. This is the subject of next subsections.

3. ITERATIVE APPROXIMATION STRATEGIES

From now on we denote as X̂t the estimate propagated from
the previous step, i.e. X̂t = argmax f (Xt |y1:t) (which is
available) and deal with efficient computation of the estimate
X̂t+1. Consider a trained acquisition, i.e. |M| = 1. Inspect-
ing (12) and (13), we see that O(2K) complexity is involved
both for evaluating the set integral and for the maximum a-
posteriori estimate: we are thus faced with the problem of
reducing the computational complexity of both operations.

3.1 Algorithm Iterative 1

Given an element G in the collection PK{1, . . . ,N} of the sub-
sets of {1, . . . ,N} with cardinality less than or equal to K, it
can be represented through an N−dimensional binary vector
having 1 in the positions dictated by the elements of G. The
correspondence between the set G and the binary vector g
allows the definition of the collection of sets:

Cd(G) = {X ∈ PK{1, . . . ,N} : dH(x,g) = d} (15)

where dH(x,g) denotes the Hamming distance between the
two vectors representing X and G. Let us rewrite (12) as
follows:

f (Xt+1|y1:t) = f (X̂t |y1:t) f (Xt+1|X̂t)

+
K

∑
i=1

[ ∑
Xt∈Ci(X̂t )

f (Xt+1|Xt) f (Xt |y1:t)] (16)
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Observe that the number of summands in (12) is exponen-
tial. We can reduce the complexity of the calculation of
this summation, and yet retain a good approximation for
f (Xt+1 | y1:t+1), if we assume that the discrete-time inter-
vals are so narrow that from time t to time t + 1 the set of
active users changes little, which is tantamount to choosing
α 
 0.5 and μ � 0.5. Denote by X̂t the MAP estimate of Xt

performed at t. If X̂t is a good estimate of Xt , and the active-
user set changes little from t to t +1, we may expect that the
largest contribution to the sum (12) is offered by the terms
corresponding to small values of d, and that the additional
summands are (approximately) decreasing as d is increasing.
Define

f (i+1)(Xt+1|y1:t) �
i+1

∑
j=0

∑
Xt∈C j(X̂t )

f (Xt+1|Xt) f (Xt |y1:t)

(17)
A heuristic algorithm, which we refer as Iterative 1, can

be defined as described herewith:

Algorithm 1 Iterative 1
1: Given y1:t+1 and the MAP estimation of the RFS of the

active user at time t, X̂t ;
2: Set i = 0 and X̂

(0)
t+1 = X̂t ;

3: Determine the new estimate as:

X̂
(i+1)
t+1 = arg max

Xt+1∈
⋃i+1

j=0 C j(X̂t )
f (yt+1|Xt+1) f (i+1)(Xt+1|y1:t)

4: if X̂
(i+1)
t+1 = X̂

(i)
t+1 or if i = iMAX

5: stop and X̂t+1 = X̂
(i+1)
t+1

6: else
7: Set i = i+1 and go to 3.
8: end if

In geometric terms, Iterative 1 consists in restricting the
calculation of (12) in a sequence of hyperspheres with in-
creasing radii and common center X̂t and then evaluating the
maximum of (13) in the hypersphere only. If this new estima-
tion differs from the estimation at the previous step then the
algorithm increments the radius up to a maximum number of
iterations, iMAX .

3.2 Algorithm Iterative 2

Instead of keeping the center fixed and increasing the radius,
a similar algorithm can be defined where the center of the
hypersphere is updated at each iteration, while the radius is
kept fixed at d = 1. We will refer to this algorithm, described
below, as Iterative 2. In it we have defined

f ′(Xt+1|y1:t) � ∑
Xt∈C1(X̂t )

⋃
X̂t

f (Xt+1|Xt) f (Xt |y1:t) (18)

4. SPHERE DETECTION FOR RFS ESTIMATION

The detection problem described by the Bayes recursion in
eqs. (12)-(13) cannot be directly solved by Sphere Detection
(SD). In this section, we will briefly review the SD algorithm
and then introduce an approximation of (12) which will make
the problem solvable by SD.

Algorithm 2 Iterative 2
1: Given y1:t+1 and the MAP estimation of the RFS of the

active user at time t, X̂t ;
2: Set i = 0 and X̂

(0)
t+1 = X̂t ;

3: Determine the new estimate as:

X̂
(i+1)
t+1 = arg max

Xt+1∈C1(X̂(i)
t+1)

⋃
X̂

(i)
t+1

f (yt+1|Xt+1) f ′(Xt+1|y1:t)

4: if X̂
(i+1)
t+1 = X̂

(i)
t+1 or if i = iMAX

5: stop and X̂t+1 = X̂
(i+1)
t+1

6: else
7: Set i = i+1 and go to 3.
8: end if

4.1 Sphere detection algorithm

Here we describe a simple version of sphere detection (SD),
in a form which will be useful for further developments 1.
Consider the minimization of a function f (x1, . . . ,xK) with
respect to its K arguments, all taking values in a discrete set
with M elements. While brute-force minimization involves
the evaluation of all MK values of f , SD simplifies the prob-
lem under the assumption that f can be written in the form
of a sum of nonnegative functions with an increasing number
of arguments:

f (x1, . . . ,xK) =
K−1

∑
k=0

fK−k,K−k+1,...,K(xK−k,xK−k+1, . . . ,xK)

(19)
The minimization of (19) can be described graphically by
using an (K + 1)-level tree graph whose paths merge into a
common uppermost node (level 0) to the MK leaves (level K).
Each node at level k emanates M branches which join it to a
node at level k + 1, each one being associated with a value
of xK−k; hence, each node at level k correspond to a value of
the partial sum of the first k terms of (19), and each terminal
branch (or leaf) to a value of f . Now, brute-force minimiza-
tion of f can be interpreted as the process of probing all the
MK paths joining the root node to all terminal leaves. SD
simplifies the process as follows. Start from the root node
and proceed downwards; at level-k node (k = 0, . . . ,K − 1),
only one branch stemming from it is chosen, that associated
with the smallest value of fK−k,K−k+1,...,K . This leads to a sin-
gle node at level k+1, from which only one branch is chosen
according to the same criterion, etc. This is equivalent to the
following algorithm, repeated for k = 0, . . . ,K −12:

x̂K−k = argmin
xK−k

fK−k,K−k+1,...,K(xK−k, x̂K−k+1, . . . , x̂K), (20)

where x̂� denotes the value chosen for x�. At the end of this
process, we obtain a preliminary estimate of the minimum
value of f , which we call f̄ . Next, we proceed to probe the
branches that were left out, backtracking from the leaf asso-
ciated with f̄ and excluding all the branches that will cer-
tainly end up into a leaf corresponding to a value of f larger

1SD was first applied to digital detection problems in [4]. For recent de-
velopments, see [5, 6, 7] and the references therein. A VLSI implementation
is described in [6].

2In the Multiuser Detection literature, the algorithm in eq. (20) is refer-
eed as Decision-Feedback (DF) [8]
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than f̄ . To do this, all branches emanating from a node are
expunged from the tree (“pruned out”) whenever the value of
the partial sum at that node is already greater than f̄ . When-
ever a leaf is reached, if this is associated with a value f < f̄ ,
then this new value replaces f̄ , and the procedure is contin-
ued.
Several variations of the basic SD algorithm are possible,
based on different search schedules. Among these, a breadth-
first search, or an M-best search, can be implemented in lieu
of the depth-first search described supra. The M-best search
consists of an approximation of the breadth-first search,
whereby at each level of the tree only M nodes are kept, viz.,
those with the smallest partial metrics. This solution may
not lead to the minimum (and hence is suboptimum), but has
the advantage of requiring a constant number of operations,
and hence of reducing the maximum, rather than the average,
complexity.

4.2 Zero-order approximation

Inspired by the same principle of Section 3, i.e., under the
assumption that the RFS change little from t to t + 1, we
could keep only the largest term of (16), i.e.

f (Xt+1|y1:t) ≈ f (X̂t |y1:t) f (Xt+1|X̂t) ∝ f (Xt+1|X̂t) (21)

We refer eq. (21) as zero-order approximation. For future
reference, defining

Λ(Xt+1 | y1:t+1) � −N0 ln f (Xt+1 | y1:t+1) (22)

we have, retaining the zero-order approximation,

Λ(Xt+1 | y1:t+1) ≈ ‖yt+1 −Sxt+1‖2 −N0 ln f (Xt+1 | X̂t)
(23)

which yields the MAP estimate

X̂t+1 = arg min
Xt+1

[‖yt+1 −Sxt+1‖2 −N0 ln f (Xt+1 | X̂t)
]
(24)

Since the dynamics of each user are independent, we have

f (Xt+1 | X̂t) =
K

∏
k=1

f (X(k)
t+1 | X̂(k)

t ) (25)

For trained mode we have

f (X(k)
t+1 | X̂(k)

t ) = μ |X(k)
t+1∩X̂

(k)
t |(1−μ)|X̂

(k)
t |−|X̂(k)

t ∩X
(k)
t+1|

×α |X(k)
t+1\X̂

(k)
t ∩X

(k)
t+1|(1−α)1−|X̂(k)

t |−|X(k)
t+1\X̂

(k)
t ∩X

(k)
t+1| (26)

Perusal of the last equations shows that they are precisely
in a form allowing application of the SD algorithm. In fact,
by applying a QR decomposition to S we have S = QR,
with (R)i, j = 0, i > j and ỹ = Q†y, and the quantity to be
minimized becomes

Λ(Xt+1 | ỹ1:t+1)

=
K

∑
i=1

∣∣ỹt+1(i)−
K

∑
j=i

ri, jxt+1( j)
∣∣2 −N0 ln f (Xt+1 | X̂t)

=
K

∑
i=1

[∣∣ỹt+1(i)−
K

∑
j=i

ri, jxt+1( j)
∣∣2 −N0 ln f (X(i)

t+1 | X̂(i)
t )

]

=
K

∑
i=1

gi
(
xt+1(K), . . . ,xt+1(i)

)
(27)

where

gi
(
xt+1(K), . . . ,xt+1(i)

)
�

∣∣ỹt+1(i)−
K

∑
j=i

ri, jxt+1( j)
∣∣2

−N0 ln f (X(i)
t+1 | X̂(i)

t ) (28)

5. NUMERICAL RESULTS

Consider now the performance of the proposed suboptimal
algorithms for MUD in a dynamic environment.
Assume a training phase. Let the spreading sequences be
m-sequences with processing gain N = 7. The frames have
length T = 10. Assume the maximum number of allowable
user to be K = 6. We first simulate a scenario where μ = 0.8
and α = 0.2. We examine the set sequence error probability
(SSEP) defined as

SSEP = Pr{X1:T �= X̂1:T} (29)

and we evaluate the algorithm complexity in term of number
of hypotheses to explore. In fig. 1 we show the SSEP ver-
sus the signal-to-noise ratio (SNR). We can see how the per-
formance of both Iterative 1 and Iterative 2 exhibits a floor
for large SNR, while the performance of the SD algorithm
is very close to that of the optimal detector in (14). Fig. 2
shows the complexity (in term of explored nodes) of the pro-
posed algorithms with respect to Bayes recursion. While the
complexities of Iterative 1 and Iterative 2 are independent of
the SNR, the complexity of the SD decreases with the SNR,
meaning that the decision feedback (DF) initialization is of
high quality. Successively, we tested a faster scenario with
μ = 0.6 and α = 0.4. Fig. 3 shows the SSEP versus SNR
of the introduced algorithms and of the optimal detector. We
notice that the performances of Iterative 1 and Iterative 2
exhibit a degradation with respect to the previous scenario,
while the SD is more robust, approaching the performance
of the optimal detector. Fig. 4 shows the complexity of the
considered algorithms. We notice that the complexity of It-
erative 1 and Iterative 2 augments with respect to the slow
scenario, while the complexity of the SD differs little in the
two scenarios.

The results in figs. 1-4 show that, at least for conveniently
large SNR, sphere detection applied to the zero-order ap-
proximation is definitely superior to both iterative 1 and iter-
ative 2, which are instead preferable in the low SNR regime.
This trend is an indirect confirmation of the suitability of the
zero-order approximation: otherwise stated, the results seem
to demonstrate that the increased accuracy in BR’s compu-
tation pursued by iterative 1 and iterative 2 is not paid off
by a significant advantage in terms of performance, which
is severely limited by the fact that, unlike sphere detection,
neither algorithm is ensured to terminate in the absolute min-
imum.

6. CONCLUSION

We have examined multiuser detectors operating without a
priori knowledge of the number of active users, and hence
detecting simultaneously the set of active users and their
data. Since implementation of optimum detectors can be lim-
ited by their complexity, which grows exponentially with the
number of potential users, we have described techniques for
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Figure 1: SSEP vs SNR (μ = 0.8 and α = 0.2).
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Figure 3: SSEP vs SNR (μ = 0.6 and α = 0.4).

the reduction of this complexity. Among the presented sub-
optimal solutions, the Sphere Detector, based on the zero-
order approximation of the Bayes recursion, exhibits mar-
ginal loss in performance with respect to the optimum detec-
tor, with a complexity that decreases with the signal-to-noise
ratio.
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