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ABSTRACT 

This paper presents a new adaptive pre-distortion (PD) 

technique, based on neural networks (NN) with tap delay 

line for linearization of High Power Amplifier (HPA) 

exhibiting memory effects. The adaptation, based on 

iterative algorithm, is derived from direct learning for the 

NN PD. Equally important, the paper puts forward the 

studies concerning the application of different NN learning 

algorithms in order to determine the most adequate for this 

NN PD. This comparison examined through computer 

simulation for 64 carriers and 16-QAM OFDM system, is 

based on some quality measure (Mean Square Error), the 

required training time to reach a particular quality level 

and computation complexity. The chosen adaptive pre-

distortion (NN structure associated with an adaptive 

algorithm) have a low complexity, fast convergence and best 

performance. 

1. INTRODUCTION 

Orthogonal frequency division multiplexing (OFDM) was 

initially presented in 1966. It has been used in the digital 

terrestrial television broadcasting and the wireless local area 

network. Hence, OFDM has received much attention in the 

development of the fourth generation mobile 

communication systems in recent years [3]. However, 

OFDM exhibits large peak-to-average power ratios, i.e., 

large fluctuations in their signal envelopes. Indeed, the 

performance of the transceivers is very sensitive to 

nonlinear distortions caused by the high power amplifier 

(HPA). Among all linearization techniques, digital pre-

distortion is one of the most cost effective and its principle 

is to distort the HPA input signal by an additional device 

called a pre-distorter which characteristics are the inverse of 

those of the amplifier. In reality, the power amplifier 

characteristics may change over time because of 

temperature drift, component aging, power level, biasing 

variations, frequency changes, etc. Thus, it is desirable to 

make an adaptive pre-distortion and that is why we are 

focused on the adaptation of pre-distorter characteristic. 

Systems which use OFDM as modulation scheme, memory 

effects of high power amplifiers cannot be ignored due to 

the broadband input signal. These memory effects may be 

explained by frequency dependence of components or by 

thermal phenomena [4]. 

The aim of our paper is to check the possibility of the 

application of a neural network to perform the function of 

the HPA pre-distorter of the OFDM signals. It seems that 

neural networks, which are nonlinear in their nature, could 

be a good tool to compensate for nonlinearity. Additionally, 

their regular structure is well fitted to an efficient 

implementation. Indeed in [1], the authors present a 

preliminary implementation of a data pre-distortion system 

using a multilayer perceptron neural network which forms 

an adaptive nonlinear device whose response can 

approximate inverse transfer functions of time-varying HPA 

nonlinearities.  

In this work we extend this solution to a one capable to 

compensate not only for the nonlinearities and their time-

varying characteristics but also for the memory effects in 

the HPA. The adaptation, based on iterative algorithm, is 

derived from direct learning for the NN PD, the crucial 

point then is to find a suitable training algorithm able to 

cope with the described network and the training data set. In 

short, this paper compares the performance of five neural 

network learning algorithms in order to determine the most 

adequate for this adaptive NN PD.  

The NN techniques used are the Gradient Descent 

backpropagation (GD), the Gradient Descent 

backpropagation with the momentum (GDm), the Conjugate 

Gradient BP (CGF), the Quasi-Newton method (BFG) and 

the Levenberg-Marquardt (LM). This comparison is carried 

out for 64 carriers and 16-QAM OFDM system with a 

saleh’s TWT amplifier, is based on some quality measure 

(Mean Square Error), the required training time to reach a 

particular quality level and computation complexity. 

The paper is organized as follow. Section II describes the 

proposed system scheme with neural network pre-distorter. 

A review of potential MLP training algorithms is presented 

in section III. Section IV presents comparison results of the 

five backpropagation methods proposed for adaptive PD in 

terms of performance and complexity and shows 

performance results of the chosen PD technique in 

compensating distortions of HPA with memory. The 

conclusion is given in section V. 

2.      SYSTEM DESCRIPTION 

Figure 1 shows the baseband discrete equivalent 

communication system model for OFDM system with pre-

distortion, where ck is the k-th transmitted symbol, which is 

mapped in 16-QAM, xn is the n-th transmitted OFDM 

sample, yn is the same sample at the output of the pre-

distorter and zn denotes the amplified one. 

 

Figure 1 - Simplified OFDM transmitter with PD and HPA 
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The pre-distorter (PD) of figure 1 is an adaptive nonlinear 

device with memory that precomputes and cancels all 

distortions caused by HPA. 

2.1 HPA model 

For the HPA model with memory, we have considered a 

Hammerstein system (see figure 2) which it can be 

represented by a time-varying memoryless HPA followed by 

a linear filter. 

                   

Figure 2 - Model of the HPA with memory 

For the nonlinear part of the HPA, we have chosen Saleh’s 

well-established TWTA model [7]. In this model, AM/AM 

(amplitude modulation to amplitude modulation) and 

AM/PM (amplitude modulation to phase modulation) 

conversion can be represented as follow:                      

              ���� = ���

	
����     and       
��� =  
����

	
����            (1) 

where r is the input modulus of the TWTA and αa, βa , αp, 

βp are four adjustable parameters. The output of the TWTA 

can be represented as: 
 

             ���� = ����exp ��. ���� + ∅��� + 
�����           (2) 
 

where ∅��� is the phase of the input signal. 

As a non-stationary (time-varying) model, we consider the 

memoryless model where the four parameters αa, βa , αp, βp 

are changing with time according to the following 

conditions [1]: 1.5 ≤  αa ≤ 3, 0.5 ≤  βa ≤ 2, 2 ≤  αp ≤ 4 and 7 

≤  βp ≤ 9. The following figures represent the variation of 

AM/AM and AM/PM in order to show the extent of the 

HPA variations used in this work. 

 

Figure 3 - AM/AM and AM/PM characteristic variations 

The linear subsystem in the amplifier that captures the 

memory effects is modeled by a low pass filter. 

2.2 Adaptive Pre-distortion for HPA 

The aim of our investigation was to apply a simple neural 

network to perform the function of the HPA pre-distorter of 

the OFDM signal.  As we mentioned earlier, the adaptation 

property of the pre-distorter is a very desired feature 

because the characteristics of power amplifiers are time 

variant.  

Then, the pre-distortion architecture presented here is 

basically derived from a post-distortion adaptive structure 

which may employ two general alternatives for its 

operation. These alternatives are: 

1
st
 Alt: Loading the pre-distorter with completely trained 

coefficients after a complete learning stage. (PD is here 

stationary (Figure 4)).  

 

Figure 4 - Block diagram for training of the PD with HPA 

2
nd

 Alt: Simultaneous updating of the pre-distorter during 

the adaptation at the post-distortion loop.  (PD is here 

adaptive (Figure 5)) 

 
Figure 5 - Simultaneous PD updating 

Figure 5 shows the detailed scheme of an adaptive pre-

distortion system based on feed-forward neural network. �� 

denotes the input signal to the pre-distorter, �� denotes the 

output signal from the pre-distorter witch is sent as input to 

the HPA and �� denotes the HPA output signal. 

The weights of the neural network pre-distorter (NN PD) 

are determined by copying the weights of NN1. These 

weights are adjusted using an adaptive algorithm. 
 

2.3 Applied neural network structure 

The pre-distorter used in this paper is a neural network 

mimetic structure (figure 6), which is composed of a Linear 

Neural network (LN), with 4 memory cells (as a linear filter 

with 4 poles) followed by a memoryless Nonlinear Neural 

network (NLN), with one hidden layer with nine neurons 

(with sigmoid activation function) and two linear neurons in 

the output layer. Using this mimetic scheme (LN-NLN), we 

realize separately the memory pre-distortion with the linear 

network and the pre-distortion of the memoryless HPA 

nonlinearities with the nonlinear neural network.    

 
Figure 6 - Linear Network LN + Non-Linear Network NLN pre-

distorter structure 

It is well known that each neuron in the network is 

composed of a linear combiner and an activation function 

which gives the neuron output:  

                    ��� =  !∑ #�,�,%��&	,%
'()*
%+, + -��.                   (3) 

where #�,�,% is the weight which connects the i-th neuron in 

layer l-1  to the j-th neuron in layer l, -��  is the bias term 

and  ��&	,% denotes the i-th component of the input signal to 

the neuron. 

yn 
HPA HPA Memory filter 

zn 
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3. TRAINING ALGORITHMS 
 

In this section, we review different algorithms used in this 

investigation to train the neural network pre-distorter: 

Gradient descent backpropagation (GD), Gradient descent 

backpropagation with the momentum (GDm), Conjugate 

Gradient BP (CGF), Quasi-Newton (BFG) and Levenberg-

Marquardt (LM). 

• Gradient Descent BP (GD) 

The gradient based methods are the most straightforward 

training algorithms for feed forward multilayer perceptron 

networks [5] and there are two different methods in which 

this gradient descent algorithm can be implemented: 

incremental mode and batch mode. The simplest 

implementation of back propagation learning updates the 

network weights and biases in the direction in which the 

performance function decreases more rapidly. The new 

weight vector �/
	 can be adjusted as: 

                    �/
	 = �/ − 12/                            (4) 

where �/  is the vector of current weights and biases, 1 is the 

learning rate and 2/ is the gradient of the error with respect 

to the weight vector. The computation of 2/ is presented in 

[5].The negative sign indicates that the new weight vector 

�/
	is moving in a direction opposite to that of the gradient. 

• Gradient Descent BP with momentum (GDm) 

The convergence of the network by backpropagation is a 

crucial problem because it requires many iterations. To 

mitigate this problem, a parameter, called “Momentum”, 

can be added to BP learning method by making weight 

changes equal to the sum of fraction of the last weight 

change and the new change suggested by the gradient 

descent BP rule (Eq. 6, [5]). The momentum is an effective 

means not only to accelerate the training but also to allow 

the network to respond to the (local) gradient.  

Then, the new weight vector is adjusted as [5]: 

                     �/
	 = �/ − 12/ + 3��/ − �/&	�               (5) 

where the parameter 3 is the momentum constant, which 

can be any number between 0 and 1. 

• Conjugate gradient BP (CGF) 

The standard backpropagation algorithm adjusts the weights 

in the steepest descent direction, which does not necessarily 

produce the fastest convergence [6]. And it is also very 

sensitive to the chosen learning rate, which may cause an 

unstable result or a long-time convergence [4]. As a matter 

of fact, several conjugate gradient algorithms have recently 

been introduced as learning algorithms in neural networks 

[5]. They use, at each iteration of the algorithm, different 

search directions in a way which produce generally faster 

convergence than steepest descent directions [2]. In the 

conjugate gradient algorithms, the step size is adjusted at 

each iteration. The conjugate gradient used here is proposed 

by Fletcher and Reeves [5][6].  

All conjugate gradient algorithms start out by searching in 

the steepest descent direction on the first iteration. 

                                 4, = −2,                                     (6) 
The search direction at each iteration is determined by 

updating the weight vector as: 

                            �/
	 = �/ + 1/4/                              (7) 

where:            4/ = −2/ + 5/4/&	                             (8) 

For the Fletcher-Reeves update, the constant 5/ is 

computed by: 

                           5/ = 67
867

67)*
8 67)*

                                     (9) 

This is the ratio of the norm squared of the current gradient 

to the norm squared of the previous gradient. 

• BFGS Quasi-Newton (BFG) 

In Newton methods the update step is adjusted as: 

                �/
	 = �/ − 9/
&	2/                          (10) 

where 9/ is the Hessian matrix (second derivatives) of the 

performance index at current values of the weights and 

biases. 

Newton's methods often converge faster than conjugate 

gradient methods. Unfortunately, they are computationally 

very expensive, due to the extensive computation of the 

Hessian matrix H coming along with the second-order 

derivatives [6]. The quasi-Newton method that has been the 

most successful in published studies is the Broyden, 

Fletcher, Goldfarb, and Shanno (BFGS) update [5]. 

• Levenberg Marquardt (LM) 

Similarly to quasi-Newton methods, the Levenberg-

Marquardt algorithm was designed to approach second-

order training speed without having to compute the Hessian 

matrix. Under the assumption that the error function is 

some kind of squared sum, then the Hessian matrix can be 

approximated as: 

                                        9 = :;:                                   (11) 

and the gradient can be computed as:  

                                        2 = :;<                                       (12) 

where : is the Jacobian matrix that contains first derivatives 

of the network errors with respect to the weights and 

biases. The Jacobian matrix determination is less 

computationally expensive than the Hessian matrix; e is a 

vector of network errors. 

Then the update can be adjusted as: 

                         �/
	 = �/ − =:;: + 1>?&	:;<                  (13) 

The parameter µ  is a scalar controlling the behavior of the 

algorithm. For µ = 0, the algorithm follows Newton’s 

method, using the approximate Hessian matrix. When µ  is 

high, this becomes gradient descent with a small step size. 
 

4. SIMULATION RESULTS AND DISCUSSION 
 

It is very difficult to know which training algorithm will be 

the fastest and the most adequate for a given problem. It 

will depend on several factors including the complexity and 

the type of problem, the data set of the training base, the 

number of weights and biases in the network and the 

required training time, hardware resources and mean 

squared error between the actual and desired network 

response. 

In this section we carry out a certain number of 

comparisons of the various training algorithms to enhance 

the learning of the memoryless nonlinear (NLN) part of the 

mimetic pre-distorter structure used in this investigation 

(see figure 6). The neural network is of feed-forward type 

with two inputs, two outputs (I and Q) and a hidden layer 

of nine neurons (2-9-2). The activation function is sigmoid 

for hidden layer and linear for output ones. Also, 312 

OFDM samples were employed for the learning process. 
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In this investigation1, the NLN is employed to approximate 

inverse transfer functions of the amplifier used in OFDM 

system with 64 carriers and 16-QAM. Accordingly, the 

accuracy expected from the approximation can affect the 

performance of the various algorithms. The following 

figure plots for each method, the Mean Square Error versus 

iteration number averaged over 30 simulations. We can see 

that the MSE in the LM algorithm decreases much more 

rapidly than the other algorithms. 

 

Figure 7- Mean square error versus iteration for different algorithms 

At this point, we can say that the LM algorithm gives more 

accurate results in terms of convergence speed. 

Nevertheless, it is important to consider the algorithmic 

complexity. The following table summarizes the results of 

the comparative study of the five mentioned algorithms in 

terms of complexity. The variable Nflops (number of 

floating operations) is the number of computations that 

each method required to run per epoch while Ntflops is the 

number of computation that each method required to reach 

the minimum MSE. In each case, the network is trained 

until the squared error is less than 10
-3

. 

For the calculation of the number of floating operations, 

additions and subtractions are one flop if real and two if 

complex. Multiplications and divisions count one flop each 

if the result is real and six flops if it is not. 
 

Algorithm Nflops Ntflops 

LM 5973400 1.5651e+007 

BFG 402710 2.225e+007 

CGF 285300 2.472e+007 

GDm 296574 * 

GD 197663 * 

Table 1. Computation comparison for different algorithms    

( * Required training goal was not reached with 2.105 Epochs) 
 

As can be seen in Table 1, the Levenberg-Marquardt 

algorithm is obviously quite well suited for the used neural 

network training. Although it requires the most significant 

number of computation per epoch (because of the Hessian 

computation), it requires the lower amount of computation 

flop (Ntflops) for the mean square error convergence goal. 

The following figure indicates the number of computation 

(Ntflops) required to converge versus the Mean Square 

Error convergence goal. Again, we observe as the error 

goal is reduced, that the improvement provided by the LM 

algorithm becomes more pronounced. LM algorithm 

performs better than other algorithms as the MSE goal is 

reduced. 

                                                           
1 All experiments were carried out Matlab running on HP pavilion ze5500 

with a Mobile Intel Pentium IV 2.66 GHz processor and 512 Mo RAM. 

 
Figure 8 - Computation number required versus mean square error  

As we mentioned previously, the HPA can be a time-

varying system. In this subsection, we assume that the four 

parameters αa, βa, αp, βp are time varying as presented in 

[1]; Thus, we study the performances of these algorithms 

for an adaptive pre-distortion (figure 5), in the case of a 

non-stationary amplifier. 

In a first phase, we train the neural network during a “To” 

time in order to fix the "NN PD" (figure 4). The following 

figure represents learning curves of the neural network with 

various algorithms according to time "t" such as (0<t<To).  

 
Figure 9 - Mean square error versus time 

The amplifier used is a Saleh’s TWTA model with a given set 

of parameters (αa = 2, βa = 1, αp = 4, βp = 9). We note that 

all algorithms converge towards different MSE and that 

LM reaches the smallest. 

At time “To”, we abruptly change the parameters of the 

amplifier such as (αa = 3, βa = 2, αp = 2.5, βp = 7.5) and we 

compare the convergence of the various algorithms in time. 

According to figure 9, we clearly notice that the 

Levenberg-Marquardt algorithm is the fastest and ensures 

the best convergence towards a minimum error.  

 We now present the validity of the proposed pre-

distortion technique (figure 6) for compensation of HPA 

nonlinear distortions and their memory effects in the same 

OFDM system as used previously. The memoryless 

nonlinear model for HPA selected is the Saleh’s TWTA 

modeled by equation (1) where αa=2, βa=1, αp=4 and 

βp=9. The linear subsystem in the HPA that captures the 

memory effects is implemented using a low pass filter (see 

response in figure 12) with 3 poles (0.7692, 0.1538, 

0.0769) [8]. For the adaptive training algorithm, we have 

used Levenberg-Marquardt which exhibits the best 
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performance compared to other training algorithms as we 

demonstrated previously.  Additive White Gaussian Noise 

(AWGN) channels were assumed to clearly observe the 

effect of nonlinearity and performance improvement by the 

proposed PD. 

We need a criterion to show how much power back-off is 

needed for optimum power efficiency. In the simulations, 

we define the input back-off (IBO) as: 

                             >@A = 10DE2	,� FG
�

HIJ
�                           (14) 

where 
%�  is the average input power and �, is the 

maximum output amplitude  . 

Symbol Error Rate (SER) diagrams are a typical 

performance measure for qualifying the compensating 

ability of proposed pre-distortion structures to reduce HPA 

distortions. Then, the following figure shows the SER 

performance versus Signal to Noise Ratio (SNR) in systems 

with a linear HPA along with nonlinear memory HPA 

without pre-distortion, with NN memoryless pre-distortion 

(NLN) and memory pre-distortion (LN-NLN). The realistic 

level of memoryless nonlinear distortions is considered by 

working with input back-off (IBO) equal to 7dB. 

 
Figure 10 - SER performance for 16-QAM OFDM with 64 

carriers at IBO =7dB 

Figure 11 represents AM/AM curves of the amplified signal 

versus input signal without pre-distortion and pre-distorted 

signal versus input signal for the studied (LN-NLN) pre-

distortion. 

The memoryless pre-distortion (NLN) is not included in this 

comparison since it has a lower performance than the LN-

NLN pre-distortion. 

 
Figure 11 - AM/AM curves for LN-NLN PD 

We show on figure 12 the response of both the HPA 

memory filter and the converged Linear Network (LN). We 

see that the memory pre-distortion has also been 

successfully identified by the LN. 

 

Figure 12 - Memory PD identification 

5. CONCLUSION 

We put forward an adaptive neural network pre-distorter 

which can automatically compensate for amplifier 

nonlinearity and thus makes it possible to transmit OFDM 

signals without incurring intolerable distortions. 

The performances of the proposed neural network pre-

distorter depend on the BP training algorithm. This 

dissertation compares the performance of five neural 

network training methods in adaptive pre-distortion. 

We demonstrated by simulations that the Levenberg-

Marquardt algorithm has the fastest convergence in terms of 

iteration number. In many cases, LM is able to obtain lower 

mean square errors than any of the other algorithms tested. 

Also LM requires the lower amount of computation for low 

MSE. This advantage is mainly noticeable if very accurate 

quality level is required. 

In short, LM is the winner of all comparisons with the 

other algorithms. We demonstrated that the performance of 

an OFDM system suffering from nonlinear distortions, 

caused by non-stationary HPA with memory, can be greatly 

improved by the proposed adaptive neural pre-distorter 

using Levenberg-Marquardt algorithm which proved to be 

efficient. 
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