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ABSTRACT
We consider the extension of the analytic signal concept
known for real valued signals to the case of complex signals.
This extension is based on the Quaternion Fourier Transform
(QFT) and leads to the so-called H-analytic signal. After
defining the H-analytic signal and giving some of its prop-
erties, we present a new notation for quaternions, named the
polar Cayley-Dickson form, which allows the extension of
instantaneous phase and amplitude for the H-analytic signal.
Identification of the components of a complex signal are then
performed through the analysis of its H-analytic signal. We
illustrate these new ideas on simulations.

1. INTRODUCTION

The definition of an analytic signal for general complex sig-
nals is still an open question. When considering complex sig-
nals, the class of proper (or analytic, in the sense originally
stated by [1]) signals contain the signals with real and imagi-
nary parts having the same amplitude and being decorrelated,
while the improper class contains the remaining complex sig-
nals. While the proper signal can be identified as the analytic
signal (in the sense defined by Ville [1]) of a real signal (in
fact, its real part), the improper signal has no such link with
real signals. However, improper signals arise in different ar-
eas in signal processing such as communications, for exam-
ple [2, 3, 4]. The aim of this paper is to propose an extension
of the analytic signal concept for improper complex signals,
and this requires the use of a Quaternion Fourier Transform.
It must be noticed that previous extensions of the analytic
signal concept already exist [5, 6], some based on Quater-
nion Fourier Transforms as well, but they all considered mul-
tidimensional real signals, while our approach here is about
complex signals.

In previous work [7], Sangwine and Le Bihan proposed
the use of the biquaternion Fourier Transform [8] to define
a hyperanalytic signal. This previous approach was moti-
vated by the definition of the complex envelope which had
most of the “classical” properties and thus was an obvious
candidate for the extension of the analytic signal to complex
signals. In this paper, we demonstrate that the Quaternion
Fourier Transform, as defined in [9], is “sufficient” to con-
struct the so-called H-analytic signal. Provided that the axis
of the Quaternion Fourier Transform is correctly chosen, it is
possible to construct the H-analytic signal which exhibits the
same properties as the “classical” analytic signal. In order to
extend the concept of instantaneous phase and amplitude to
improper complex signals, we also introduce a new quater-
nion representation, named the polar Cayley-Dickson form,
which is helpful to interpret the H-analytic signal. Simula-
tions illustrate the concept introduced in this paper.

2. PRELIMINARY CONCEPTS
We present here some useful concepts used in the definition
of the H-analytic signal.

2.1 Quaternions
We review shortly some facts about quaternions. Details can
be found for example in [10]. A quaternion q is a 4D hy-
percomplex number classicaly written in its Cartesian form
as: q = a+bi+jc+kd, where a,b,c,d ∈ R are its compo-
nents and where i,j and k are roots of −1 and multiply to-
gether like: ij=−ji and ijk=−1. The norm of q is |q| =
(a2 + b2 + c2 + d2)

1
2 , its conjugate is q = a− bi− jc− kd

and its inverse is q−1 = q/|q|2. Any quaternion q can be
expressed in the polar form: q = |q|(sin(θ) + µ cos(θ)) =
|q|exp(µθ). Another notation, called Cayley-Dickson nota-
tion, represents a quaternion as a complex number with com-
plexified components (with a different imaginary unit), the
following way: q = s+rj where s = a+ib and r = c+id. A
quaternion is called unitary if |q| = 1 and any unitary quater-
nion can be written as: exp(µθ). A pure quaternion q is
such that a = 0. A pure unit quaternion is a square root of
-1. A quaternion basis is a 4D basis such as {1,µ,ξ ,µξ}
where µ , ξ are two orthogonal pure unit quaternions1. Over
the set of quaternions H, it is possible to define some invo-
lutions and we present here one of use in the sequel. Given
a quaternion q ∈ H and a pure unit quaternion p ∈ H, then
qp = −pqp is an involution2. Such involutions are useful in
quaternion components identification, see for example [5].
More on quaternion involutions can be found in [11].

2.2 Generalized Cayley-Dickson form
Consider a quaternion valued signal q(t) that can be ex-
pressed in a (generalized) Cayley-Dickson form:

q(t) = z1(t)+ z2(t)µ (1)

where z1(t) = ℜ(z1(t)) + ξ ℑ(z1(t)), z2(t) = ℜ(z2(t)) +
ξ ℑ(z2(t)) are complex signals and {1,µ,ξ ,µξ} is a quater-
nion basis. Such signals are representative of polarized sig-
nals for example [12, 13]. The two components of the
Cayley-Dickson decomposition can be expressed as follows:






z1(t) =
1
2

(
qξ (t)+q(t)

)

z2(t) =
1
2

(
qξ (t)−q(t)

)
µ

(2)

1Among all the possible quaternion basis, the most widely used is
{1,i,j,k}

2Involution means here that (qp)p = q and (qm)p = qpmp where q,m∈H
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where qξ (t) = −ξ q(t)ξ . In this notation, z1(t) is called the
simplex part of q(t) while z2(t) is called the perplex part of
q(t) (see [9] for details). Thus, any quaternion signal can be
seen as a pair of complex signals in any quaternion basis.

2.3 Quaternion Fourier transform
Here, we present an important property of the Quaternion
Fourier Transform (QFT). We make use of the right QFT
defintion given given by Sangwine and Ell in [9].

Consider the complex signal z(t) = ℜ(z(t))+ ξ ℑ(z(t)),
i.e. z(t) takes values in Cξ . Before trying to build its
H-analytic signal, we examine how it is transformed us-
ing a QFT of axis µ (noted as QFTµ in the sequel), when
(1,ξ ,µ,ξ µ) is a quaternion basis. The QFTµ of z(t) is thus:

Z(ν) = QFTµ [z(t)] =
∫ +∞

−∞
z(t)e−µ2πνtdt

=
∫ +∞

−∞
ℜ(z(t)) [cos(2πνt)−µ sin(2πνt)]dt

+ξ
∫ +∞

−∞
ℑ(z(t)) [cos(2πνt)−µ sin(2πνt)]dt

=
∫ +∞

−∞
ℜ(z(t))cos(2πνt)dt

−µ
∫ +∞

−∞
ℜ(z(t))sin(2πνt)dt

+ξ
∫ +∞

−∞
ℑ(z(t))cos(2πνt)dt

−ξ µ
∫ +∞

−∞
ℑ(z(t))sin(2πνt)dt

(3)
This last equality shows that the QFTµ of z(t) naturally

makes the following decomposition/association:
• Even part of ℜ(z(t)) −→ ℜ(Z(ν)).
• Odd part of ℜ(z(t)) −→ ℑµ(Z(ν))
• Even part of ℑ(z(t)) −→ ℑξ (Z(ν)).
• Odd part of ℑ(z(t)) −→ ℑξ µ(Z(ν))

where ℑη (when η is a pure unit quaternion) stands for the η
imaginary component of the quaternion. So, the QFTµ of a
complex signal z(t) = ℜ(z(t))+ξ ℑ(z(t)) allows us to isolate
the odd and even parts of its real and imaginary parts in the
four different components of its Z(ν). This point guarantees
that the symmetries of the real and imaginary parts are not
mixed.

Now, consider two functions g and f such that: g : R→C
and f : R→R. Then, consider the QFT of their convolution:

QFTµ [g∗ f (t)] =
∫ +∞

−∞

∫ +∞

−∞
g(τ) f (t− τ)dτe−2µπνtdt

=
∫ +∞

−∞

∫ +∞

−∞
g(τ)e−µ2πν(t ′+τ) f (t ′)dτdt ′

=
∫ +∞

−∞
g(τ)e−2µπντ dτ

∫ +∞

−∞
f (t ′)e−2µπνt ′dt ′

(4)
and so:

QFTµ [g∗ f (t)] = QFTµ [g(t)]QFTµ [ f (t)]
= QFTµ [ f (t)]QFTµ [g(t)] (5)

Thus, the definition of the QFT we use here has the property
of “verifying” the convolution theorem in the considered case
of functions g and f . This will be of use for the extension
of the analytic signal (definition of the Hilbert transform).
Futhermore, the QFT of f (t) = 1

πt is given by:

F(ν) =−µ sign(ν) (6)

This is obvious from the possiblity of calculating the QFT
with axis µ from two complex Fourier transforms in an ap-
propriate basis [9]. Here, as f is real valued, the change of
basis has no effect.

3. THE H-ANALYTIC SIGNAL
We now give the definition and properties of the H-analytic
signal based on the QFT.

3.1 Definition and properties
The H-analytic signal of z(t) presented here has been worked
out with an approach similar to the one originally developed
by Ville [1]. The following definitions give the details of the
construction of this signal. Note that the signal z(t) is con-
sidered to be an improper complex signal, i.e. for example
ℜ(z(t)) and ℑ(z(t)) are not orthogonal.

Definition 1. Consider a complex signal z(t) = ℜ(z(t)) +
ξ ℑ(z(t)) and its Quaternion Fourier Transform Z(ν) given
by:

Z(ν) = QFTµ [z(t)] =
∫ +∞

−∞
z(t)e−µ2πνtdt (7)

where µ , the axis of the transform, is taken such that
(1,ξ ,µ,ξ µ) is a quaternion basis. Then, the “Hilbert trans-
form” of z(t), noted zh(t), has the following QFTµ :

Zh(ν) =−µ sign(ν)Z(ν) (8)

where the Hilbert transform is defined as:

HT [z(t)] = p.v.
(

z∗ 1
πt

)

The principal value (p.v.) is understood in its classical
sense here (see [1] for example).

This definition of the Hilbert transform based on QFTµ is
derived thanks to the convolution property given in Section
2.3.

Definition 2. Given a complex valued signal z(t) that can be
expressed as z(t) = ℜ(z(t))+ξ ℑ(z(t)), and given a pure unit
quaternion µ such that (1,ξ ,µ,ξ µ) is a quaternion basis,
then the H-analytic signal of z(t), noted za(t) is given by:

za(t) = z(t)+ zh(t)µ (9)

where zh(t) is the “Hilbert transform” of z(t) given in Defi-
nition 1. The QFT of the H-analytic signal is thus:

Za(ν) = Z(ν)−µ sign(ν)Z(ν)µ (10)

which is a direct extension of the “classical” analytic signal.

With this definition of the H-analytic signal given in Def-
inition 2, we now investigate some of its properties.
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Property 1. The spectrum of the H-analytic signal is right-
sided, i.e. Za(ν) = 0, ∀ ν < 0.

Proof. The QFT of za(t) is given by:

Za(ν) = Z(ν)−µ sign(ν)Z(ν)µ

=
∫ +∞

−∞
z(t)e−µ2πνtdt

−µ sign(ν)
(∫ +∞

−∞
z(t)e−µ2πνtdt

)
µ

=
∫ +∞

−∞
ℜ(z(t))cos(2πνt)dt−

µ
∫ +∞

−∞
ℜ(z(t))sin(2πνt)dt+

ξ
∫ +∞

−∞
ℑ(z(t))cos(2πνt)dt

−ξ µ
∫ +∞

−∞
ℑ(z(t))sin(2πνt)dt

−µ sign(ν)
(∫ +∞

−∞
ℜ(z(t))cos(2πνt)dt

)
µ

+µ sign(ν)
(

µ
∫ +∞

−∞
ℜ(z(t))sin(2πνt)dt

)
µ

−µ sign(ν)
(

ξ
∫ +∞

−∞
ℑ(z(t))cos(2πνt)dt

)
µ

+µ sign(ν)
(

ξ µ
∫ +∞

−∞
ℑ(z(t))sin(2πνt)dt

)
µ

Noting that µ and ξ commute with all the other terms (sin
and cos, sign, ℜ and ℑ) and remembering that ξ µ = −µξ ,
then the QFT of za(t) takes the following simple expression:

Za(ν) = (1+ sign(ν))Z(ν)

which completes the proof.

Property 1 together with the property of the QFTµ given
in section 2.3 show that the H-analytic signal is right-sided
and at the same time, keeps the different part of the original
signal in different imaginary components of the transform.

Property 2. The original signal z(t) is the simplex part of
its corresponding H-analytic signal za(t). It is obtained by:

z(t) =
1
2

(za(t)−ξ za(t)ξ )

Note that if the original signal z(t) is expressed in the
classical complex basis {1,i} and if the axis of the QFT
is taken as j, then the ℑj and ℑk parts of za(t) contain the
Hilbert transform of z(t). This property is a direct conse-
quence of the way we have defined the H-analytic signal
given in eq. (9), and this allows us to recover the original
complex signal from its quaternion valued H-analytic sig-
nal. Note that this is the counterpart of the fact that, in the
“classical” case, the original real signal is the real part of the
analytic signal [1].

Also, note that our definition of the H-analytic signal in-
cludes the classical definition of Ville [1] as a special case.
If the signal z(t) is real, then the H-analytic signal is simply
complex with the imaginary axis being the one chosen for
the QFT.

4. THE POLAR CAYLEY-DICKSON FORM
We now look at the definition of the amplitude and phase
concepts for the H-analytic signal. In order to so, we intro-
duce a new notation for quaternions. It is different from the
classical polar form and the polar form introduced in [5]. It
is based on the Cayley-Dickson notation. Details about this
new quaternion representation can be found in [14].

Definition 3. Any quaternion q ∈H with Cartesian form as:
q = a + bi+ cj+ dk can be expressed in a polar Cayley-
Dickson form:

q = AeBj (11)

where A = ℜ(A)+iℑ(A) ∈ C and B = ℜ(B)+iℑ(B) ∈ C.

This form of a quaternion q is the counterpart of the polar
form of complex numbers. Here, the modulus and phase are
complex valued. A method for finding A and B is detailed in
[14].

Now, in the case of the H-analytic signal z(t), its polar
Cayley-Dickson form is given as:

za(t) = Aa(t)eBa(t)j (12)

The values of the components (as well as the information
they provide on the original signal) of this polar Cayley-
Dickson form of the H-analytic signal are illustrated in the
following section.

5. SIMULATIONS
We illustrate here the H-signal concept on a simple simula-
tion example. Consider a complex signal z(t) made up in the
following way:

z(t) = f (t).(s1(t)+is2(t)) (13)

where s1(t) = sin(2πν1t); and s2(t) = sin(2πν2t + ξ ) and
f (t) = sin(2πν f t) and with ν f > ν1 > ν2. The H-analytic
signal of z(t), i.e. za(t), is computed, using j as the axis of
the QFT, and expressed in its polar Cayley-Dickson form as
in (12).

Then, from the polar Cayley-Dickson form of the H-
analytic signal, and remembering that Aa(t) and Ba(t)
are complex valued and can be expressed as Aa(t) =
|Aa(t)|exp

(
ΨAa(t)

)
and Aa(t) = |Ba(t)|exp

(
ΨBa(t)

)
, the fol-

lowing information is available:





s1(t) = ℜ(Aa(t))
s2(t) = ℑ(Aa(t))

Φ2(t)−Φ1(t) = tan
(
ΨAa(t)

)

|z(t)|
| f (t)| = |Aa(t)|

f (t) = ∓cos(|Ba(t)|)

(14)

where Φ2(t) and Φ1(t) are the instantaneous amplitudes of
s2(t) and s1(t) respectively. In figure (1) we present, as a
function of time, the complex amplitude Aza(t) as well as the
original signal z(t). It shows that the complex envelope of
the H-analytic signal, namely Aza(t) is covering the original
signal.

As presented above, Aza(t) allows to recover parts of the
original signal: ℜ(Aza(t)) = s1(t) and ℑ(Aza(t)) = s2(t).
This interesting property could be of interest for example in
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finding the modulation frequency of an improper complex
signal (or a common component shared by the real and imag-
inary parts of an improper signal), as it allows a simple way
of identifying the real and imaginary base band signals (here
s1(t) and s2(t)). This is a consequence of theorem 1 in [14].

In figure (2) the modulus of the original is compared to
|Aza(t)|. It can be seen that the modulus of Aza(t) is the en-
velope of the modulus of the original signal z(t), which il-
lustrates the concept of instantaneous amplitude to the case
of improper complex signals. In Figure (3), the signal f (t)
is compared with the cosine of the modulus of the instanta-
neous complex phase Bza(t). It can be seen that there is an
ambiguity sign on some cycles, however, from an estimation
point of view it can be seen that estimation of the frequency
of f (t) directly from cos(|Bza(t)|) is an easy task. Note that
this could be used as a easy estimator of the correlation be-
tween real and imaginary components of an improper com-
plex signal z(t). Future work could investigate a comparison
with the work proposed in [3]. Finally, in figure (4), the dif-
ference between the instantaneous frequencies of s1(t) and
s2(t) (computed using the classical analytic signal) is com-
pared to the tangent of the phase of the complex envelope,
i.e. tan(ΨAa(t)). The perfect match between the two curves
also suggest that it is possible to estimate the relative instan-
taneous phase between the real and imaginary components
of an improper complex signal by inspection of the phase of
the modulus of its H-analytic signal.

6. DISCUSSION AND CONCLUSIONS
We have introduced a new extension of the concept of ana-
lytic signal to the case of improper complex signals. The H-
analytic signal is based on the use of the Quaternion Fourier
transform. Some of its properties have been presented, that
generalize in a straightforwad manner the known results in
the “classical” case. In order to access the information pro-
vided by the H-analytic signal, we have introduced a new
representation for quaternions and linked the components
of this representation to useful information on the improper
original signal. In particular, the H-analytic signal allows di-
rect access to common parts, relative instantaneous frequen-
cies and uncorrelated components of the complex original
signal. Applications of the H-analytic signal may be ex-
pected in the numerous applications dealing with improper
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Figure 1: Original complex signal z(t)= f (t).(s1(t)+is2(t))
(green) and complex envelope Aza(t) (blue).

complex signals. In particular, some estimators of the men-
tioned caracteristics of the improper signal could be based on
the H-analytic signal and allow fast identification of, for ex-
ample, the parameters of an unknown improper complex sig-
nal. Such estimators should be compared to existing work.
Also, the possible definition of a H-analytic signal for im-
proper complex signals suggests the possiblity of defining
some time-frequency representations for such signals, based
on the quaternion Fourier transform.
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