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ABSTRACT
In this paper, we revisit the denoising problem in the context
of elliptical distributions; this approach extends a work by
Alecu et al. [1] in two directions: (i) we address the mul-
tivariate case and (ii) our study is not restricted to the scale
mixtures of Gaussians, but extends to the whole family of
elliptical distributions. We consider the framework where
both the vector to be estimated and the additive independent
corrupting noise are elliptically distributed. The MMSE and
Wiener filters are computed and their performances are com-
pared in terms of the value of the SNR in several illustrations.

1. INTRODUCTION
Recently, Alecu et al. have introduced the notion of “Gaus-
sian transform” of a random variable with symmetric proba-
bility density function (pdf) [1]. They deal in fact with ran-
dom variables that are known since decades as scale mix-
tures of Gaussians [2, 3, 4, 5, 6, 7]. Such a variable can be
stochastically expressed as the product of a positive random
variable A, by an independent Gaussian random variable N,
namely X d

=AN, where d
= stands for the equality in distribu-

tion sense. In image processing, this kind of random variable
is widely used for modeling images: in this context, variable
A2 generally models the texture of images. The so-called
“Gaussian transform” of the pdf of X as defined in [1] is in
fact nothing but the pdf of the square A2 of the mixing vari-
able A.

In the scale mixture of Gaussians context, Alecu et al.
proposed to apply their concept of Gaussian transform to
the denoising problem: from an observation Y = X +Z, one
wishes to estimate random variableX , assumed scale mixture
of Gaussians of known mixing disribution, where Z is an ad-
ditive Gaussian noise with known variance and independent
of X . In this paper, we propose to revisit this problem in
the more general d-dimensional case, where both X and Z
are scale mixtures of Gaussians. More generally, we con-
sider the problem where X and Z are elliptically distributed:
this class of random vectors contains the class of scale mix-
tures of Gaussians, but it is wider since there exists ellipti-
cally distributed random vectors that are not scale mixtures
of Gaussians (multivariate Pearson type II for example).

In section 2 we briefly recall some basics about ellipti-
cally invariant random vectors. Then, section 3 is devoted to
the denoising problem in such a context. In this section we
will derive the minimum mean-squared error (MMSE) esti-
mator in the elliptically distributed framework. Moreover,
we will show that under an additional assumption on the co-
variance matrices of X and Z, the MMSE estimator simpli-
fies to a one dimensional estimator. Finally, the shape of the

MMSE estimator and its performance are exhibited in several
illustrations and for various values of the dimension d. They
are compared to those of the best linear estimator. Some con-
clusions are drawn from these examples, and comments on
Alecu’s results are provided [1].

2. BASICS ON ELLIPTICALLY DISTRIBUTED
VECTORS

A d-dimensional random vector X is elliptically distributed
if its probability density function px is a function of the
quadratic form (x− µ)tR−1(x− µ), that is

px(x) = |R|−1/2dx((x− µ)tR−1(x− µ))

where dx is a function R+ → R+ and R a symmetric definite
positive matrix [4, 8, 9, 10, 11]. Matrix R is called character-
istic matrix of distribution px and µ is a location parameter.
When defined, these quantities are respectively the covari-
ance matrix and the mean of X . When R ∝ I, the (d × d)
identity matrix, X is said spherically or orthogonally invari-
ant (or distributed).

In the case where function s $→ dx(s) admits an inverse
Laplace transform (see [9]), the pdf px can be expressed as

px(x) =
∫ +∞

0
fa(a)N (x− µ |a2R)da

where N (·|R) denotes the d-dimensional zero-mean Gaus-
sian pdf with covariance matrix R. Integrating px over x
shows that, provided that integration signs can be exchanged,
function fa sums to 1. Moreover, under the condition that dx
is an absolutely monotone function, function fa is nonnega-
tive [10, 11, 12, 13, 14] and hence is a pdf. In other words,
there exists a positive scalar random variable1 A ∼ fa ≡ pa
such that X has the stochastic representation X d

=AN where
N ∼ pN(x) = N (x− µ |R) is independent of A, and equality
is in the sense of distributions: vector X is then called a scale
mixture of Gaussians. In the following, we will denote by p
a pdf, while f will represent a mixing function, that can be
a pdf ( f ≥ 0) or not. We note that matrix R is defined up to
a constant scaling factor that can be included in A; choosing
R as the covariance matrix of X removes this indeterminacy
and imposes that

∫ +∞
0 a2 fa(a)da= 1 (whether fa ≥ 0 or not).

Several properties of scale mixtures of Gaussians or,
more generally, of elliptical distributions can be found in the
above cited papers. Note however that the stability property
mentioned in [1, Property 5] holds only in the scalar con-
text. Indeed, in the d-dimensional context, the sum of two

1∼ means “distributed according to”
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independent elliptically distributed random vectors X and Y
remains elliptically distributed if and only if either their co-
variance matrix Rx and Ry are proportional (Rx ∝ Ry) or they
are both Gaussian. Indeed, one can show that the Fourier
transform of an elliptical pdf with characteristic matrix R is
elliptical with characteristic matrix R−1 [8]. Hence, the char-
acteristic function Φx+y(u) = E[eiut(X+Y )] writes Φx+y(u) =
Φx(u)Φy(u) = φx(utRxu)φy(utRyu). The only possibility for
φx(utRxu)φy(utRyu) to be of the form φ(utRu) is that either
Rx ∝ Ry, or both φx and φy are exponential. In both cases, ob-
viouslyR=Rx+Ry – which is the covariancematrix of X+Y
in any case – is the characteristicmatrix of the elliptically dis-
tributed vector X +Y . In the case of scale mixture of Gaus-
sians with Rx = αRy and with the mixing random variable of
X and Y equal to A∼ fa ≡ pa and B∼ fb ≡ pb respectively,
the mixing variable is given by C =

√
A2+α2B2 ∼ fc ≡ pc.

The relation between fa, fb and fc remains true even if fa or
fb is not a pdf.
In the rest of the paper, we focus without loss of general-

ity on zero-mean random vectors, i.e. µ = 0, and restrict our
study to vectors that admit a covariance matrix (e.g. we ex-
clude cases such as Cauchy distributed vectors). In the next
section, we turn now to the revisit of the denoising problem
in the here-introduced framework.

3. DENOISING IN THE ELLIPTICAL CONTEXT
Let us consider the estimation problem of a d-dimensional
random vector X with elliptical distribution and covariance
matrix Rx, from a noisy observation

Y = X+Z (1)

where X and Z are assumed independent. Let us moreover
assume that the observation noise Z is also elliptically dis-
tributed with covariance matrix Rz. We know that pdfs px
and pz of X and Z can be written respectively as

px(u) =
∫ +∞

0
fa(a)N (u|a2Rx)da and

pz(u) =
∫ +∞

0
fb(b)N (u|b2Rz)db,

where fa and fb are supposed known. Remember that the
mixing (or weighting) functions fa and fb can be negative
(see [9]). Finally, we also assume that both covariance matri-
ces Rx and Rz are known. We deal with the same context as
in [1], but generalized to any dimension d and to the general
elliptical framework.

Let us define the symmetric definite positive matrix

R= R−
1
2x RzR

− 1
2x

where R
1
2x denote the (unique) symmetric definite positive

square root of the symmetric definite positive matrix Rx [15,
th. 7.2.6], and write the eigenvalue factorization of R as

R=VΔVt

where Δ is a diagonal matrix of the eigenvalues of R and
whereV is the orthogonal matrix of the corresponding eigen-
vectors. The denoising problem can then be simplified by
multiplying model (1) by VtR−1/2x on the left:

Y0 = X0+Z0 (2)

with {X ,Y,Z}0 = VtR−
1
2x {X ,Y,Z}. It is immediate that X0

has identity covariancematrix and that Z0 has covariancema-
trix Δ. Moreover, vectors X0 and Z0 remain independent and
since px is orthogonally invariant, X0 has the same mixing
function/distribution fa as X . Similarly Z0 has the same mix-
ing function fb as Z. This is obvious when dealing with scale
mixtures of Gaussians vectors : X0 = VtR−

1
2x X d

=AVtR−
1
2x N

and VtR−
1
2x N d

=N0 ∼ N (·|I) and similarly Z0
d
=BN′

0 with
N′
0 ∼ N (·|Δ).
As a conclusion, we can assume without loss of general-

ity in the following that Rx = I and Rz = Δ.

3.1 Minimum Mean Square Estimation
The well-known Minimum Mean Square Error (MMSE) es-
timator of X based on the observation Y , i.e. the vector X̂
that minimizes the quadratic error E[‖X̂ −X‖2], is given by
the conditional mean [16]

X̂mmse = E[X |Y ].

In the rest of the paper, X̂mmse will denote X̂mmse(y) =
E[X |Y = y]. Using Bayes’ rule, and remarking that, by the
independence assumption, py|x(y,x) = pz(y− x), this expres-
sion can be equivalently written as

X̂mmse =
∫

Rd
xpx|y(x,y)dx=

∫
xpz(y− x)px(x)dx

py(y)
(3)

Both pdfs px and pz can be expressed via their mixing func-
tions fa and fb to achieve

X̂mmse =
1

py(y)

∫

Rd
x ×

∫ +∞

0
N (y− x|b2Δ) fb(b)db

∫ +∞

0
N (x|a2I) fa(a)dadx

=
1

py(y)

∫

R2+
N (y|a2I+b2Δ) fa(a) fb(b) ×

∫

Rd
xN (y− x|b2Δ)N (x|a2I)dx

N (y|a2I+b2Δ)
da db

Now, the fraction of the last line is recognized as the MMSE
estimator of a Gaussian vector N1 with covariance matrix a2I
embedded in an independent Gaussian noise N2 with covari-
ance matrix b2Δ: the best estimator of N1 is thus linear and
by theWiener theory [16], it expresses as a2I(a2I+b2Δ)−1y.
Replacing this expression in X̂mmse and expressing py as the
convolution of px and pz, namely

py(y) =
∫
pz(y− x)px(x)dx

=
∫

R2+

(∫
N (y− x|b2Δ)N (x|a2I)dx

)
fa(a) fb(b)dadb

we finally achieve the following expression for the MMSE
estimator:

X̂mmse=

∫

R2+
N (y|a2I+b2Δ)a

2 fa(a) fb(b)(a2I+b2Δ)−1dadb
∫

R2+
N (y|a2I+b2Δ) fa(a) fb(b)dadb

y

(4)
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which makes use of integration over R2+ instead of the inte-
gration over Rd required in (3). Again, py can be viewed as∫
py,a,b(y,a,b)dadb=

∫
py|a,b(y,a,b) fa(a) fb(b)dadb in the

case of scale mixture of Gaussians, but this expression still
holds if fa or fb take negative values.

When dimension d = 1 and when Z is Gaussian ( fb(b) =
δ (b− 1)), this result coincides with that of Alecu [1, eq.
(34)], but, again, the nonnegativity assumption of fa is
not required here and the expression is extended to the d-
dimensional elliptically distributed context. As for the es-
timator proposed by Alecu, numerical integration is gener-
ally needed. But the numerical evaluation is easy since the
matrix inversion and the determinant evaluation involve low
complexity computations.

Note also that Chu [9] addressed a similar problem, but
under the assumptions that the concatenated vector [X Z] is
elliptically distributed and that random vectors X and Z are
uncorrelated. In this particular context, the solution X̂w is
given by the Wiener theory

X̂w = (I+Δ−1)−1Δ−1y= (I+Δ)−1y (5)
Since the two parts X and Z of an elliptical vector [X Z] can
be independent only in the case where X and Z are Gaus-
sian, we conclude that estimator (4) and Chu’s estimator (5)
coincide only in the Gaussian case. Moreover, the Wiener
estimator is the best linear estimator in the MSE sense what-
ever X and Z, provided they are uncorrelated.

In the elliptical framework considered here, an inter-
esting case arises when Δ = σ2I. In this case, both
Y and X̂mmse(Y ) are spherically distributed. Immedi-
ately from (4), for any rotation (or orthogonal) ma-
trix Cθ , one has Ctθ X̂mmse(Cθy) = X̂mmse(y). Now, if
Cθ is so that Cθ y = [y0 0 . . . 0]t , then X̂mmse(y) =
Ctθ [Xmmse(y0) 0 . . . 0]t where Xmmse(y0) is a scalar function
under the form (4), in which N (y|a2+σ2b2) is replaced by
(a2+σ2b2)− d−1

2 N (y|a2+σ2b2). The 2d double integrations
required in (4) reduce to only 2 double integrations, i.e. to
the computation load involved in the one-dimensional con-
text, at the extra cost of two rotations (one applied to vector
y and one to the estimator).

The following subsection aims to illustrate the perfor-
mance of the MMSE estimator as a function of the signal-
to-noise ratio (SNR). This performance will be compared to
those of the Wiener estimator, and some comments will be
drawn in regards to suboptimal approaches that can be found
in the literature.

3.2 Illustrative examples
In the following, we restrict our attention to the case where
Δ= σ2I and where the corrupting noise Z is Gaussian. The
performance in terms of Mean Square Error (MSE) of both
estimators X̂mmse and X̂w will be shown versus the signal-to-
noise ratio 2 SNR = E[‖X‖2]

‖Z‖2 = d
Tr(Δ)

= σ−2 and for several

values of the dimension d. Writing for any estimator X̂ =
X̂(y) the Mean Square Error asMSE = EY [E[‖X̂−X‖2|Y ] ] ,
one easily achieves

MSE = d+
∫

Rd
‖X̂‖2py(y)dy−2

∫

Rd
X̂ t X̂mmse py(y)dy (6)

2Tr denote the trace of a matrix

This error has no analytical expression in the general case,
except in the Gaussian case and dealing with a linear estima-
tor (e.g. Wiener). However, in the particular case when (i)
Δ= σ2I, (ii) noise Z is Gaussian and (iii) the estimator is of
the form X̂ = f̂ (yty)y (as this is the case for both MMSE and
Wiener estimators), both integrands in the MSE reduce to
scalar functions of yty and, from [17, 4.642], the computation
of (6) simplifies to an integration over R+, what makes the
numerical integration tractable. In all figures below, the the-
oretical results are depicted, using respectively (4), (5) and
(6).

The first case deals with a vector X following an ex-
ponential power distribution X ∼ px(x) ∝ e− ( γxt x)

p
2 where

γ =
Γ
(
d+2
p

)

dΓ
(
d
p

) . We limit here our investigation to the case

where 0 < p < 2. For d = 1, this class of distributions
is that studied by Alecu et al. and generally known as p-
generalized Gaussian distributions [1]. In the general d-
dimensional case, one can show that the mixing function is
fa(a) ∝ ad−3 P p

2

(
a−2(2γ)−1 cos−

2
p (pπ/4)

)
where Pα is

the pdf of an α-stable variable of stability index α and to-
tally skewed to the right (with skew parameter β = 1) [18].
Except in the particular case of the Lévy distribution given by
α = 1

2 , Pα has no analytical expression [18]. However its
values can be numerically computed and codes are available
at the following address [19].

Figure 1 describes the behavior of X̂mmse versus y, for
SNR = −5 dB, and for p = .7 (left) and p = 1 (right). The
solid line corresponds to the dimension d= 1, the dashed line
to d = 5 (with y= [y0, 0, . . . ,0]t) and the dashed-dotted line
to d = 10. The dotted line represents the Wiener estimator.
We first note that for any value of y, the MMSE estimator
differs dramatically from theWiener estimator. However, for
any dimension d, it appears that the MMSE, although non-
linear, is roughly linear in 3 (or at least 2) domains; this sug-
gests a possible local approximation by such a suboptimal
estimator (e.g. by the Wiener filter for small values of y).
This approach is left as a perspective since it requires that a
threshold between “small” (“medium”) and “large” values of
y should be determined. Finally, we observe that the dimen-
sion has a small influence on the shape of the estimator.

Figure 2 depicts the behavior of the MSE normalized by
the dimension, MSEd , of the MMSE estimator, as a function
of the SNR, compared to that of the Wiener estimator. It ap-
pears that, in general, for small SNR values the performance
of theWiener filter degrades, while for large SNR values both
estimators behave similarly. For large values of p, the per-
formance of the Wiener filter is close to that of the MMSE
estimator, and degrades more and more as p decreases. The
performances of the estimators proposed in [1] are not de-
picted here, but they appear worse than the Wiener filter in
general (and obviously worse than the MMSE). Because of
its simplicity, the Wiener filter is to be preferred in general
for exponential power distributed X . Only for “small” val-
ues of p, the MMSE estimator should be preferred, despite
it requires numerical integration. Note however that the esti-
mator proposed by Alecu requires also numerical integration
which does not seem simpler than that required to implement
the MMSE.
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Figure 1: Estimator X̂mmse as a function of y for the MMSE
estimator of X , exponential power distributed corrupted by
Gaussian noise. The SNR is -5dB, and p = .7 (left) or p =
1 (right) while the dimension is d = 1 (solid line), d = 5
(dashed line) and d = 10 (dashed-dotted line). The dotted
line represents the Wiener estimator.
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Figure 2: Mean Square Error normalized by dimension d
versus the SNR is the same context as in figure 1 and with the
same legend (d= 1 for theWiener filter, roughly independent
on d).

The second case concerns a vector X with d−variate Stu-

dent -t distribution px(x) ∝
(
1+ xtx

m−2

)− d+m
2 where m is the

degree of freedom, assumed larger than 2. 3 Contrarily to the
previous example, fa has an analytical expression given by
fa(a) ∝ a−1−me−

m−2
2a2 [6, 9, 20]. In this case, estimator (4) is

evaluated numerically via the change of variable a= σ tanθ .
Figure 3 describes the behavior of X̂mmse versus y and figure
4 depicts the behavior of the normalized MSE versus SNR.
The parameters and legends are the same as in the previous
example, except that parameter p is replaced by m= 2.5 and
m = 5 respectively. In the illustration, all the previous con-
clusions and observations still hold.

Although not represented here, we have checked that as
m goes to infinity, the MMSE estimator X̂mmse converges to
the Wiener estimator (X tends in distribution to a Gaussian).
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Figure 3: X̂mmse(y) for X Student-t distributed and for m =
2.5 (left) or m= 5 (right) with the same legend as in figure 1.

3for values m ≤ 2, m− 2 is replaced by 1 in the expression of px and
one can check that X has infinite covariance; for m= 1 one finds a Cauchy
random vector
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Figure 4: Normalized MSE versus the SNR in the same con-
text as in figure 3 and with the same legend.

The last example aims to show that the previous results
still hold even if X , although elliptically distributed, is not a
scale mixture of Gaussians. As an example, the multivariate
Pearson type II distributions belong to this class. However,
as far as we know, there is no analytical form for the mixing
function fa. It can be numerically evaluated (inverse Laplace
transform), but for (more simple) illustration purposes only,
let us consider an ad-hoc example where fa, taking negative
values, is not a pdf. We choose fa(a) ∝ ad−1Jm+ d

2
(γ a−2)

where m > 1 and where Jν is the Bessel function of the
first kind and of order ν . From [17, 6.623-3], px(x) ∝
(√

(xtx)2+4γ2 − xtx
)m+ d

2 with γ =
2Γ(m+d+3

2 )Γ(m2 )
Γ(m+d+2

2 )Γ(m−12 )
. Fig-

ure 5 represents then X̂mmse versus y and figure 6 depicts the
behavior of the normalized MSE versus SNR. The param-
eters and legend are the same as in the previous examples,
except that m= 1.2 and m= 2.5 respectively.

This illustration picks an example that does not belong
to the class of scale mixtures of Gaussians. However, in this
case, implementing the MMSE still works while for this kind
of variable the approach of Alecu seems no more usable since
fa is not a pdf. Furthermore, the whole previous conclusions
and observations still hold in this illustration. This suggests
that the shape of the MMSE and the generally good perfor-
mance of theWiener filter should be generic to the estimation
of elliptical distributed vectors embedded in Gaussian noise.
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Figure 5: X̂mmse(y) for the non scale mixture of Gaussians
above-presented and for m= 1.2 (left) or m= 1.5 (right).
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Figure 6: Normalized Mean Square Error versus the SNR is
the same context than in figure 5 and with the same legend.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



4. DISCUSSION
In this paper we have revisited the denoising problem, ex-
tending the approach of [1], that deals only with scalar
scale mixture of Gaussians, to the more general class of d-
dimensional elliptically distributed vectors. We have shown
that when the MMSE estimator (3) cannot be implemented
easily and when the mixing functions are known, the mini-
mum mean square estimator can be implemented using nu-
merical integration, at a reasonable computational cost. First,
we have seen that the numerical integration is simplified by
the introduction of the linear preprocessing (2). The inte-
grations over Rd required for (3) are then replaced by inte-
grations over R2+ in (4). Moreover, we remarked that in the
case where the covariance matrices of the vector to be esti-
mated and of the noise are proportional, the problem reduces
to a one dimensional estimation problem (up to two addi-
tional rotations). The shape of the resulting estimator and
its performances are illustrated on several examples where
the additive noise is Gaussian; however, the generalization
to elliptical additive noise induces only light computational
complexity, since the simple integration is replaced by a dou-
ble one. We note, however, that the suboptimal estimation
technique proposed in [1] also required numerical integra-
tion. Although not discussed here, refined or fast numeri-
cal integration methods can be considered such as quadrature
methods.

The shapes of the MMSE suggest that suboptimal ap-
proaches using estimators linear in different ranges for y,
“small” (“medium”) or “large”, but with different slopes, are
to be considered. This should require to determine a thresh-
old between these ranges of observations y. We also ob-
served that, in terms of MSE, the Wiener estimators seems
generally almost as good as the MMSE estimator. Except
for highly non-Gaussian cases, this estimator should be priv-
ileged since it is very elementary to implement. At the oppo-
site, it is possible that an estimator linear in 2 or 3 ranges of y
as just suggested should be a good compromise between the
MMSE and the Wiener estimator. But these conclusions rely
on the illustration and need to be more deeply investigated.
The case where the covariance matrices are not proportional
is not illustred here; several Monte-Carlo simulations lead to
the same conclusions concerning the MSE. However, con-
trary to the proportional covariance matrix case, estimator
X̂mmse is no more elliptically distributed and X̂mmse(y) must
be analyzed in the entire d-dimensional space. Such a study
is left to future investigations.

Finally, other estimators can be considered. In [1], the
maximum a posteriori (MAP) estimation is discussed, al-
though as presented it is equivalent to the MMSE (i.e. in the
Gaussian context). Preliminary work shows that, as in the
scalar case, the MAP estimator is solution of a scalar non-
linear equation (via the scalar functions dx and dz). Numer-
ical techniques like Newton-Raphson algorithms can hence
be considered to find the solution of the MAP. Although sub-
optimal, such an approach can be considered when both the
mixing functions are unknown or (3) cannot be implemented.
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