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ABSTRACT

The stereographic projection determines a bijection between
the two-sphere, minus the North Pole, and the tangent plane
at the South Pole. This correspondence induces a unitary
map between the corresponding L? spaces. Using this map,
any plane wavelet may be lifted to a wavelet on the sphere.
In this work we quickly review some existing constructions
of spherical wavelets, then we apply the new procedure to
orthogonal compactly supported wavelet bases in the plane
and we get continuous, locally supported orthogonal wavelet
bases on the sphere. As an example, we perform a singularity
detection, where the other constructions of spherical wavelet
bases fail.

1. INTRODUCTION

Two-dimensional wavelets are by now a standard tool in im-
age processing, under the two concurrent approaches, the
Discrete Wavelet Transform (DWT), based on the concept of
multiresolution analysis, and the Continuous Wavelet Trans-
form (CWT). While the former usually leads to wavelet
bases, the CWT has to be discretized for numerical imple-
mentation and produces in general only frames.

Nowadays, many situations yield data on spherical sur-
faces. For instance, in Earth and Space sciences (geography,
geodesy, meteorology, astronomy, cosmology, etc), in crys-
tallography (texture analysis of crystals), in medicine (some
organs are regarded as sphere-like surfaces), or in computer
graphics (modelling of closed surfaces as the graph of a func-
tion defined on the sphere). Thus there is a need for suitable
techniques for analyzing such data. In the spherical case, the
Fourier transform amounts to an expansion in spherical har-
monics, whose support is the whole sphere. Fourier analysis
on the sphere is thus global and cumbersome. A possible
replacement is to adapt the wavelet transform (WT) to the
sphere.

2. THE CWT ON THE TWO-SPHERE

A first approach is to extend the CWT to the two sphere
§? = {x € R3, ||x|| = 1}. A complete solution was obtained
by Vandergheynst and one of us [1, 2], by a group-theoretical
method. As it is well-known in the planar case, the design of
a CWT on a given manifold X starts by identifying the opera-
tions one wants to perform on the finite energy signals living
on X, that is, functions in L2(X ,dVv), where V is a suitable
measure on X. Next one realizes these operations by unitary
operators on L?(X,dv) and one looks for a possible group-
theoretical derivation.

In the case of the two-sphere S?, the required transfor-
mations are of two types: (i) motions, which are realized
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by rotations p € SO(3), and (ii) dilations of some sort by
a scale factor a € R% . The problem is how to define prop-
erly the dilation on the sphere S?>. The solution proposed
in [1, 2] consists in lifting onto the sphere, by inverse stere-
ographic projection, the usual radial dilation in the tangent
plane at the South Pole. More precisely, the Hilbert space
of spherical signals is L?(S?,du), where du = sinfd0de,
0 € [0, 7] is the colatitude angle, ¢ € [0,27) the longitude
angle, ® = (0, ¢) € S?. In that space, the desired operations
are realized by unitary operators on L?(S?):

.rotation R, : (R, f)(®) = f(p~'w), p € SO3),

. dilation D, : (D,f)(w) = A(a, G)I/Zf(a)l/a), acRY.
In these relations, @, = (0,,¢), 6, is defined by cot% =

acot$ for a > 0 and the normalization factor A (a,0)'/? is
needed for compensating the noninvariance of the measure
U under dilation. Then, given an admissible wavelet y, the
spherical CWT of a signal f € L*(S?) is defined by

Wy (p.0) = [, [RoDuv(@) f(@)du(@). ()

Here the wavelet y is admissible if it belongs to L?(S?) and
satisfies the condition

v(6,9) _
/52 1—cos6 du() =0.

This transform may be inverted and one gets an exact recon-
struction formula. For a detailed analysis of continuous 2-D
wavelet transforms, we refer to the monograph [3].

Although this spherical CWT was originally obtained by
a group-theoretical method, the construction may be short-
circuited if one remarks that it is uniquely determined by the
geometry, in the sense that it suffices to impose conformal
behavior of the relevant maps. More precisely, the stereo-
graphic projection is the unique conformal diffeomorphism
from the sphere to its tangent plane at the South Pole. Sim-
ilarly, the stereographic dilation is the unique radial dilation
on the sphere that is conformal [18]. Thus one gets the for-
mula (1) directly, without the sophisticated group-theoretical
calculation.

A byproduct of the analysis is a complete equivalence
between the spherical CWT and the usual planar CWT in the
tangent plane, in the sense that the stereographic projection
induces a unitary map 7 : L>(S?) — L?(R?). This fact allows
one to lift any planar 2-D wavelet, including directional ones,
onto the sphere by inverse stereographic projection.

The spherical CWT (1) may be discretized and one ob-
tains frames, either half-continuous (only the scale variable a
is discretized) or fully discrete [2, 5]. The method is easy to
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implement, it leaves a large freedom in choosing the wavelet
v, it allows the use of directional wavelets, it preserves
smoothness and it gives no distortion around poles, since all
points of S? are equivalent under the action of the operator
Rp. However, it is computationally intensive, especially in
the fully discrete case.

There is an alternative that also leads to a half-continuous
wavelet representation on S2. It consists in using the so-
called harmonic dilation instead of the stereographic one.
This dilation acts on the Fourier coefficients of a function f,
that is, the numbers f ,, := (Y}", )52, where {Y",.{ € N,m =
—£,..., L} is the orthonormal basis of spherical harmonics in
L?(S?). The dilation d, is defined by the relation

—

(daf)[’m = faéﬁm, a>0.

This technique, originally due to Holschneider [10] and
Freeden-Windheuser [8], has recently been revived in the ap-
plications to astrophysics [19]. However, although this def-
inition leads to a well-defined, uniquely invertible wavelet
representation, with steerable wavelets and full rotation in-
variance, there is no proof so far that it yields a frame. Hence
one may question the stability of the reconstruction process,
since it is the lower frame bound that guarantees it.

As a matter of fact, no discretization scheme leading to
a wavelet basis is known, and the method applies to band-
limited functions only. This entails high redundancy and thus
a higher computing cost, which is not suitable for large data
sets. There is also the problem of finding an appropriate dis-
cretization grid which leads to good frames.

For all those reasons, one would prefer to try and build
directly a DWT on the sphere.

3. THE DWT ON THE SPHERE

Many authors have designed methods for constructing dis-
crete spherical wavelets. All of them have advantages and
drawbacks. These may be characterized in terms of several
properties which are desirable for any efficient wavelet anal-
ysis, planar or spherical.
- Basis: The redundancy of frames leads to nonunique ex-
pansions. Moreover, the existing constructions of spherical
frames are sometimes computationally heavy and often ap-
plicable only to band-limited functions.
- Orthogonality: This method leads to orthogonal reconstruc-
tion matrices, whose inversion is trivial. Thus, orthogonal
bases are good for compression, but this is not always suf-
ficient: sparsity of reconstruction matrices is still needed in
the case of large data sets.
- Local support: This is crucial when working with large data
sets, since it yields sparse matrices. Also, it prevents spread-
ing of “tails” during approximation. !
- Continuity, smoothness: These properties are always desir-
able in approximation, but not easily achieved.

Let us quote a few of those methods, with focus on those
properties, without being exhaustive (a more comprehensive
review, with all references may be found in [4]).

(1) The spherical DWT using spherical harmonics

' A wavelet has local support if it vanishes identically outside a small
region. It is localized if it is negligible outside a small region, so that it may
have (small, but nonzero) “tails” there. Since these tails may spread in the
process of approximation of data and spoil their good localization properties,
local support is definitely preferred (see the example in [16]).

Various constructions of discrete spherical wavelets us-
ing spherical harmonics may be found in the literature, lead-
ing to frames or bases. The advantages of this method is that
it produces no distortion (since no pole has a privileged role)
and that it preserves smoothness of the wavelets. However,
the wavelets so obtained have in general a localized support,
but not a local one, i.e., it covers the whole sphere. Since this
implies full reconstruction matrices, the result is not suitable
for large amount of data. Examples are the works of Potts et
al. [11] or Freeden and Schreiner [9].

(2) The spherical DWT via polar coordinates

The polar coordinate map p : I = [0, 7] x [0,27) — S? has
the familiar form p : (8, @) — (cos @sin 6, sin @ sin 6,cos ).
A problem here is continuity. Indeed a continuous func-
tion f defined on I remains continuous after mapping it onto
S? if and only if £(0,0) = f(8,2x), for all 8 € [0, 7], and
there exists two constants Py, Ps such that f(0,¢) = Py and
f(m, @) = Ps, for all ¢ € [0,27). Unfortunately, these con-
tinuity conditions are not always easily satisfied by wavelets
on intervals.

The obvious advantage of this approach is that many data
sets are given in polar coordinates and thus one does not
need to perform additional interpolation when implement-
ing. However, there are disadvantages. First, no known con-
struction gives both continuity and local support. Next, there
are distortions around the poles: p maps the whole segment
{(0,9), ¢ € [0,27)} onto the North Pole, and the whole seg-
ment { (7, 9), ¢ € [0,27)} onto the South Pole. Representa-
tive examples are papers by Dahlke ef al. [6] or Weinreich
[17].

(3) The spherical DWT via radial projection from a convex
polyhedron

Let I" be a convex polyhedron, with vertices on S?, trian-
gular faces and the center of the sphere inside I'. The idea of
the method, due to one of us [12, 14, 15], is to obtain wavelets
on S first by moving planar wavelets to wavelets defined on
the faces of I" and then projecting these radially onto S?. The
resulting wavelets are orthogonal with respect to a weighted
scalar product on L?(S?). This method offers many advan-
tages: no distortion around the poles, possible construction
of continuous and locally supported stable wavelet bases, lo-
cal support of the wavelets (leading to sparse matrices), easy
implementation, possible extension to sphere-like surfaces
(closed surfaces) [13]. As a disadvantage, we may note the
lack of smoothness of the wavelets.

As a matter of fact, no construction so far has led to
wavelet bases on the sphere which are simultaneously con-
tinuous (or smoother), orthogonal and locally supported, al-
though any two of these three conditions may be met at the
same time. This suggest to try another approach.

4. LIFTING THE DWT FROM THE PLANE TO THE
SPHERE

The method we propose consists in lifting wavelets from the
tangent plane to the sphere by inverse stereographic projec-
tion [16]. It yields simultaneously smoothness, orthogonal-
ity, local support, vanishing moments. The disadvantage is
that it gives distortions around a pole. In addition, although
it is theoretically applicable to the whole pointed sphere S,
in practice it can be used only for data “away” from that pole.
However, the pole can be taken anywhere on the sphere, for
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instance, in a region where no data is given. To give an ex-

ample, European climatologists routinely put the North Pole

of their spherical grid in the middle of the Pacific Ocean.
Our sphere is

={{=({1.0.6) eR, P+ G+ (GG -1 =1},

where we have wused the parametrization § =
cos@sin@,{ =sin@sinf, {3 =1+cos 0, for 0 € (0,7, €
[0,27). The pointed sphere is S = S\ {(0,0,2)}.

Let now p : S — R? be the stereographic projection from
the North Pole N(0,0,2) onto the tangent plane {3 = 0 at the
South Pole. The area elements dx of R? and u(¢) of §?
are related by dx = v({)?du (&), where the weight factor
v:$? — Ris defined as

2 2
V@)= 5"
Notice that L*(S?) := L*($%,du(&)) = L*(S?), since the
set {N} is of measure zero. As mentioned in Section 2,
the stereographic projection p induces a unitary map 7 :
L*(S$?) — L*(R?), with inverse 7! : L2(R?) — L*(S?) given
by n7'(F) = v-(Fop), VF € L*(R?). As a consequence,
we have

(F,G) g2y = (Vv

,E=(6,6.5)=(0,9) €S2

1 —cosO

’ (FO p),V ’ (GO p)>L2(S2)7 VF,Ge L2(R2)'

@)
This equality allows us to construct orthogonal bases on
L*(S?) starting from orthogonal bases in L?(R?). More pre-
cisely, we will use the fact that, if the functions F, G € L*(R?)
are orthogonal, then the functions F* = v-(Fop) and G* =
v - (Gop) will be orthogonal in L?(S?). Thus, the construc-
tion of multiresolution analysis (MRA) and wavelet bases in
L*(S?) is based on the equality (2).

The starting point is a MRA in L*(R?) (for a thorough
analysis of MRAs in 1-D and in 2-D, we refer to the mono-
graph [7]). For simplicity, we consider 2-D tensor wavelets,
that is, we take the tensor product of two 1-D MRAs, with
scaling function ¢, mother wavelet y, and diagonal dilation
matrix D = diag(2,2). Thus we get a 2-D MRA of L?(R?),
i.e., an increasing sequence of closed subspaces V ; C L*(R?)
with ez V; = {0} and U, V; = L*(R?), satisfying the
following conditions:

() f()eV; < f(D) eV,
(2) There exists a function ® € L?(R?) such that the set

{®(-—k), k € Z?} is an orthonormal basis of V.

In terms of the original 1-D MRA, the 2-D scaling function

is ®(x) = ¢(x)¢(y) and for the 2-D MRA it generates, one
has
Vin=Vin @V = (V;eW)e(V;eW))
=VeVv)o(W;eV;)oV;eWw,;)oW;oW;)]
= VJ'EBWJ-.

Thus W consists of three pieces, with the following or-
thonormal bases:

{Vin ()91, (), (k1,k2) € Z*} onb. in W; @V,
{0k (D) Wjk, (), (kth) €Z’} onb. inV;@W;,
Wik )Wk, (), (ki,k) € 7* }onb. in W; @W;.

This leads us to define three wavelets

Then, {*¥;, k = (ki,kz) € Z*, = h,v,d} is an orthonor-
mal basis for W; and {*¥;,, j € Z, k € Z>, A = h,v,d}
is an orthonormal basis for @ e, W = L?(R?). Here, for
j € 7Z,k = (ki,ky) € Z* and for F € L*(R?), the function
Fjx is defined as

Fix(x,y) =2/F(2/x—ki,2/y— k).

Now we can proceed and lift the MRA to the sphere. To
every function F € L?(IR?), one may associate the function

F* € L*($%) as F* = v - (F op). In particular,
F}\ =V (Fjxop)for jeZ, ke Z? 3)

and similarly for the spherical functions @, and A‘P‘}k,
where CIDA,-’k,}“ ¥, x,A = h,v,d, are the plane 2-D scaling func-
tions and wavelets, respectively. For j € Z, we define 7] as
Vj:={v-(Fop), F € V;}. Then we have:

(1) ¥; C ¥4 for j € Z, and each ¥} is a closed subspace of

L*($%);
() Njez ¥ ={0} and U;cy ¥; is dense in L*(S?);
3) {<I>0 o K€ 77} is an orthonormal basis for .

A sequence (¥})jez of subspaces of L2(S?) satisfying (1),
(2), (3) constitutes a MRA of L*(S?).

Define now the wavelet spaces #; by ¥j.1 = ¥; ® ¥;.
Then {MI-‘J «» K€ 7% A =h,v,d} is an orthonormal basis for
#; and {* Wi JEL ke 7%, A = h,v,d} is an orthonormal
basis for (B e, #}) = L2($?).

In conclusion, if & has compact support in R?, then <I>f]l7k

has local support on S? (and diamsupp <I>j?_k — 0as j— o),
and similarly for the respective wavelets. An orthonormal 2-
D wavelet basis yields an orthonormal spherical wavelet ba-
sis. Smooth 2-D wavelets yield smooth spherical wavelets.
In particular, Daubechies wavelets yield locally supported
and orthonormal wavelets on S?. Thus the same tools as in
the planar 2-D case can be used for the decomposition and
reconstruction matrices (so that existing toolboxes may be
used).

5. AN EXAMPLE: SINGULARITY DETECTION

As an application of our construction, we analyze the follow-
ing zonal function on S*:

1, 0 <
f(8.9) = { (1+3C0826)_1/2, 6>

The function f and its gradient are continuous, but the second
partial derivative with respect to 6 has a discontinuity on the
equator & = 7. The function f is shown in Figure 1 (a).
Detecting properly such a discontinuity requires a wavelet

with three vanishing moments at least, so that, as far as we

“
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Figure 1: (a) The graph of the function f(6,¢) defined in
(4); (b) Its analysis with the spherical wavelet associated to
the familiar 6-coefficient Daubechies wavelet db3.

know, none of the existing constructions of discrete spherical
wavelets could detect this discontinuity.

Instead, we consider the discretized spherical CWT with
the spherical wavelet ¥}, associated to the planar wavelet

Wi, (x,y) = A2[e™ 20 07)]

=yt 2y -8 (P +y?) + 8)[%(x2+y2)'
&)

This wavelet has four vanishing moments (again a planar
wavelet with less than three vanishing moments could not
detect this discontinuity). The analysis is presented in Figure
2. Panels (a), (b), (b) and (d) present the spherical CWT at
smaller and smaller scales, a = 0.08,0.04,0.02 and 0.0165,
respectively. From Panels (a)-(c), it appears that the disconti-
nuity along the equator is detected properly, and the precision
increases as the scale decreases. However, there is a limit:
when the scale a is taken below a = 0.018, the singularity is
no more detected properly, and the transform is nonzero on
the upper hemisphere, whereas the signal is constant there.
This is visible on Panel (d), which shows the transform at
scale a = 0.01655. In fact, the wavelet becomes too narrow
and “falls in between” the discretization points, ripples apper
in the Southern hemisphere. This effect is described in detail
in [2].

On the contrary, the well-known Daubechies wavelet db3
lifted on the sphere by (3) does the job better than the wavelet
‘Pf_lz mentioned above, as one can see in Figure 1, Panel (b).
The computational load is smaller and the precision is much
better, in the sense that the width of the detected singular
curve is narrower.

The same tests were performed for the function f7 7, ob-
tained from f by performing a rotation around the axis Ox
with an angle of /7, in order to test the possible distortions
in latitude when approaching the North Pole. The results are
presented in Figure 3. Panel (a) shows the analysis of the
function f7 7 with the discretized CWT method, using the
wavelet l//f_,z, at scale a = 0.0165. Panel (b) gives the analysis

with the Daubechies wavelet db3 lifted onto the sphere. No
appreciable distortion is seen, the detection is good all along
the discontinuity circle, and again the precision is better with
the lifted Daubechies wavelet. Notice that the computation
leading to the figure of Panel (a) was made with a grid finer
than that used in Figure 2, so that the detection breaks down
at a smaller scale (here below a = 0.01).

Of course, this example is still academic, but it is signif-
icant. More work is needed, in particular, for estimating the

x 10" x10™

Figure 2: Analysis of the function f(6, ¢) by the discretized
CWT method with the wavelet 1//;;2, at scales: (a) a = 0.08

(b) a=0.04 (c) a=0.02 (d) a = 0.0165. The sampling grid
is 256 x256.

-
x 10

(b)

Figure 3: (a) Analysis of the function f7/7(0, @) by the dis-
cretized CWT method with the wavelet W;iz’ at scale a =

0.0165 ( the sampling grid here is 512x512.); (b) Analysis
of the function f; /7(8,¢), with the spherical wavelet associ-
ated to db3.

degree of distorsion around the pole and applying the method
to real life signals.
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