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ABSTRACT
Common types of hearing impairment are caused mainly by a
loss of nearly instantaneous compressive amplification in the
inner ear. Therefore, it seems plausible that the loss might
be compensated by fast frequency-dependent compression in
the hearing aid.

We simulated impaired listeners’ auditory analysis of
hearing-aid processed speech in noise using a functional au-
ditory model. Using hidden Markov signal models, we es-
timated the mutual information between the phonetic struc-
ture of clean speech and the neural output from the auditory
model, with fast and slow versions of hearing-aid compres-
sion. The long-term speech spectrum of amplified sound
was identical in both systems, as specified individually by
the widely accepted NAL prescription for the gain frequency
response.

The calculation showed clearly better speech-to-auditory
information transmission with slow quasi-linear amplifica-
tion than with fast hearing-aid compression, for speech in
speech-shaped noise at signal-to-noise ratios ranging from
−10 to +20 dB.

1. INTRODUCTION

The most common type of hearing impairment is character-
ized by a loss of the compressive amplification of cochlear
outer hair cells [12]. This results in a reduced auditory dy-
namic range and abnormal loudness perception. The normal
biological auditory compression acts nearly instantaneously
[15]. Therefore, it has often been assumed that the loss
of internal fast compression should be compensated by fast
frequency-dependent amplitude compression in the external
hearing aid [17, 8].

All modern hearing instruments are non-linear in the
sense that they adapt their behaviour depending on the input
signal, for example to reduce the audibility of background
noise, separate speech from noise, sharpen speech formants,
and/or emphasise weak consonants.

A hearing-aid compression system is usually called
“fast” or “syllabic”, if it adapts quickly enough to pro-
vide different gain frequency responses for adjacent speech
sounds with different short-time spectra. Instruments with
slow-acting automatic gain control keep their gain frequency
response nearly constant in a given speech-plus-noise envi-
ronment, and thus preserve the differences between short-
time spectra in an ongoing speech signal. Hearing-aid com-
pressors usually have frequency-dependent compression ra-
tios, because the hearing loss varies with frequency. The
compressive variations of the gain frequency response are

usually controlled by the input signal levels in several fre-
quency bands.

Compression may be applied in hearing aids for several
different purposes:
1. Present speech at comfortable level and spectral balance,

compensating for variations in speaker distance and voice
characteristics.

2. Protect the listener from sudden loud noises that would
be uncomfortably loud if amplified with the gain
frequency response needed for normal conversational
speech.

3. Improve speech understanding by making also very weak
speech segments audible, while still presenting louder
speech segments at a comfortable level and spectral bal-
ance.

A fast compressor can to some extent meet all three objec-
tives, whereas a slow compressor can only fulfil the first goal.
A slow compressor must be supplemented with other systems
to solve the other two problems.

Our present research question is focused only on the third
objective: Assuming that the signal from a given individual
speaker is already presented at a suitable level and with op-
timal spectral balance for a given hearing-imparied listener,
and assuming also that there are no sudden loud sounds in the
environment, should we then expect that a fast compressor
can provide better speech understanding than a slow com-
pressor?

Fast hearing-aid compression has two opposing effects
with regard to speech recognition:
1. It provides additional amplification for weak speech

components that might otherwise be inaudible.
2. It decreases spectral contrast between audible speech

sounds.
It is not clear which of these two effects dominates in deter-
mining the net benefit for the user. Evaluation studies have
generally failed to show a clear benefit of fast vs. slow-acting
compression (for reviews, see [2, 6]).

In this study we estimate a theoretical measure of the ben-
efit to be expected with fast compression. We simulate the
listener’s auditory analysis of hearing-aid processed speech
in noise using a computational auditory model. The sim-
ulation allows us to estimate the mutual information (MI)
between the phonetic structure of a sequence of spoken
words and the corresponding stream of excitation patterns
that mimics the neural output from the peripheral auditory
system. The result indicates an upper bound on the speech-
recognition performance that might be achieved by an ideal
speech pattern classifier, trained on the auditory-model out-
put.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



Articulation Audition

Decision

HA

Noise

!! !"

!
#

!
$

Figure 1: Model of the speech communication chain. The
listener will try to estimate the word sequence W from the
stream R of auditory neural patterns. A good hearing aid
(HA) should increase the amount of speech information car-
ried by the auditory data.

Of course, a given individual listener may not be able to
process the sensory data optimally. One study indicates that
some forms of compression are beneficial only for listeners
with good cognitive functions [11]. Thus, if a theoretical
simulation suggests that fast compression allows more audi-
tory speech information to be conveyed to the brain, the slow
(short-time linear) processing might still be better for some
listeners. On the other hand, if the fast compressor provides
less speech information to a theoretically optimal decoder,
we may conclude that it probably cannot improve speech un-
derstanding for real listeners, compared to a similarly well-
adapted slow compression system.

2. THEORY AND METHODS

Since neither speech nor audition is deterministic, it is nat-
ural to model each signal in the communication chain as a
stochastic process. In our model, speech communication is
summarized in the following stages (see Fig. 1):
1. The speaker decides to utter a word sequence w, which is

a realization of the random process W .
2. The speaker pronounces the words, generating an acous-

tic signal, modeled by the random process X .
3. The speech signal is contaminated by additive noise and

processed by a hearing aid (HA).
4. The noisy processed signal Y is analysed by the listener’s

periphal hearing, producing an auditory pattern sequence
r, which is a realization of the random process R.

5. The listener tries to estimate w from the information
available in r.

We use this model structure to estimate the amount of speech
information made available to hearing-impaired listeners us-
ing simulated hearing aids with fast and slow compression.
Each of the stages in the chain is explained in further detail
in the following subsections. A similar model structure was
used in [16].

2.1 Speech Material
For all calculations we use a standardised Swedish closed-set
speech recognition test material, usually called “Hagerman
sentences” [7]. Similar tests exist in several other European
languages. The test consists of 50 words, organised into 5
positions in each sentence, with ten possible words at each
position. The words are chosen so that randomly selecting

one of the ten words at each position always generates a syn-
tactically correct, but semantically unpredictable, sentence.
We used this material mainly because the “grammar” defin-
ing all possible sentences can be described by a very simple
probabilistic model. All calculations were performed for an
acoustic speech presentation level of 65 dB re. 20 µPa.

The standard recording includes a separate channel with
(slightly modulated) noise with a power density spectrum
identical to the long-term spectrum of the test words. The
speech and noise channels were mixed together at signal-to-
noise ratios (SNR) ranging from −10 to +30 dB.

2.2 Signal Representation
The speech and noise waveforms are divided into 20-ms
frames with 50% overlap, i.e. with 10-ms update interval.
The power spectral density is computed for each frame at a
non-linear frequency scale from 50 to 15000 Hz, with steps
corresponding to 0.5 auditory equivalent rectangular band-
width (ERB) [12]. Each short-time spectrum is converted to
the dB domain, which is preferred here because Euclidean
distance in this space is approximately proportional to per-
ceptual difference. The spectrum is converted by an or-
thogonal discrete cosine transform (DCT) into 25 cepstral
coefficients, because these are approximately uncorrelated
for speech, noise and most other pseudo-stationary signals
[4]. This enables us to assume diagonal covariance matri-
ces when training the probabilistic models. After the model
training, however, we use the inverse DCT to return to the
spectral domain for describing the input signal to the audi-
tory model, after hearing-aid processing.

We denote the sequence of acoustic short-time spectra for
the clean speech as a discrete-time random vector sequence
X = (X1, . . . ,Xt , . . . ,XT ). Each Xt is a vector in which el-
ement Xit represents the spectrum level (in dB) sampled at
frequency fi and time t. The speech signal is mixed with
noise, processed by a hearing instrument, and then analysed
by the auditory model. The auditory-model response is de-
noted R = (R1, . . . ,Rt , . . . ,RT ), using the same frame steps
as in the acoustic spectral sequence. In each auditory vector
Rt , element R jt mimics the activity, at time t, in a set of nerve
fibres originating from an auditory “place” z j along the inner-
ear basilar membrane. These fibres have maximal sensitivity
to sound frequencies at their characteristic frequency, but the
response is also influenced by adjacent input frequencies, as
determined by the model frequency resolution, described in
Sec. 2.5.

2.3 Rate of Mutual Information
We model the characteristics of random sequences X and R
by hidden Markov models (HMM), as described in Sec. 2.4.
The hidden state sequence in the clean-speech model is de-
noted S = (S1, . . . ,ST ). Each state represents a cluster of sim-
ilar short-time spectra indicating one type of phonetic speech
segment.

The Rate of Mutual Information (MI) specifies the
amount of speech information successfully transmitted
through the chain. The MI rate (in bits per frame) from the
phonetic state sequence to neural output is defined as

rSR = lim
t→∞

h(Rt |R1, . . . ,Rt−1)−h(Rt |St) =

= lim
t→∞

E
[

2log
f (Rt |St)

f (Rt |R1, . . . ,Rt−1)

]
,

(1)
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where h() is the differential entropy function, defined using
the expectation operator E [ ] and the probability density f ().
As the differential entropy is a logarithmic measure of vari-
ability, the MI rate can also be seen as a measure of Modula-
tion Transfer.

Using the trained and transformed HMM as a ran-
dom source, we simply generate a long random state se-
quence (s1, . . . ,sT ) and corresponding output data sequences
(r1, . . . ,rT ) of speech and noise processed by the hearing aid
and the auditory system. We then estimate the speech-to-
neural MI by replacing the expectation in Eq. (1) by stochas-
tic integration as

r̂SR =
1
T

d+T

∑
t=d+1

2log
f (rt |st)

f (rt |r1, . . . ,rt−1)
. (2)

Here the denominator is conveniently calculated using the
Forward Algorithm with the HMM. The standard deviation
(SD) of the MI estimate was monitored during calculations.
For each presented MI data point we used at least 50000
frames, or more if needed to make the SD of the estimate
less than 0.01 bit/frame. The first d = 20 frames of each
generated sequence were discarded in order to reach approx-
imately stationary conditions in the averaged data.

2.4 Hidden Markov Model Training
Each word in the speech test material (Sec. 2.1) is mod-
elled by a left-right HMM. We use tied HMM:s where all
word models share the same set of output density func-
tions. The conditional probability density for any observed
K-dimensional vector rt , from a HMM state St = n, is mod-
elled as a Gaussian mixture (GMM)

f (rt |St = n) =

=
M

∑
m=1

wnm
1

(2π)K/2
√

detCm
e−

1
2 (rt−µm)T C−1

m (rt−µm) (3)

Note that the GMM component parameters µm and Cm are
tied, i.e. identical for all states. Only the GMM weight
factors wnm depend on the HMM state. This HMM variant
is sometimes called “semi-discrete”. The presented results
were calculated with M = 40 GMM components, and each
excitation-pattern vector rt was calculated with K = 75 ele-
ments representing “place” samples with a uniform resolu-
tion of 0.5 ERB.

Each word HMM is first trained using the clean speech
signal. This reduces the risk of over-fitting the HMM:s to
the training data, as all GMM components are trained on the
entire database. Then the noise signal is added at the spec-
ified SNR, the signal is processed by the simulated hearing
aid, and the shared Gaussian components are retrained on the
modified signal Y . The auditory model defines a non-linear
memoryless mapping of each input spectrum vector Yt to a
corresponding excitation-pattern vector Rt = g(Yt).

The model for the auditory pattern sequence is then ob-
tained by modifying the shared Gaussian components to ac-
count for auditory-model transmission. This transformation
is approximated by a locally linear expansion around the
mean for each component, as

Rt ≈ g(µm)+D(Yt −µm)+Wt , (4)
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Figure 2: Structure of the auditory model. Typical trans-
fer functions for a normal-hearing listener are plotted next to
each stage. Sensorineural hearing loss is modelled mainly by
reduced outer hair cell (OHC) non-linear gain, and if needed
also by reduced sensitivity of inner hair cells (IHC).

where D is the partial-derivative matrix of the non-linear
transformation g( ), and Wt is an additive noise vector that
represents all neural random variations that are independent
of the input signal.

All Markov state transition probabilities were kept un-
changed in these transformations. After this training pro-
cedure, all word models are joined to form one single er-
godic sentence HMM, including the transition probabilities
between words in the probabilistic “grammar” for the speech
material (Sec. 2.1).

2.5 Auditory Model
The auditory model captures essential features of peripheral
hearing. It includes effects of outer ear transmission to the
eardrum, middle-ear transmission, non-linear cochlear filter-
ing, outer hair cell amplification, and inner hair cell sensi-
tivity. The model operates entirely in the frequency domain,
in a similar way as [13]. The structure of the model is sum-
marised in Fig. 2. This model does not attempt to describe
any retro-cochlear auditory processes, such as temporal in-
tegration, or any masking phenomena with time constants
greater than about 20 ms. We only intend to estimate the
sensory information available as input to central processes.

For each input short-time spectrum the model calculates
a corresponding output excitation-level pattern. Cochlear fil-
tering is modelled by a combination of two Roex(p)-shaped
filters [1, 10], a linear tail part and a non-linear peak filter
with gain depending on the peak-filter output. The peak fil-
ters are symmetric with normal ERB, and the bandwidth is
independent of input level. This is a reasonable first ap-
proximation [1]. The tail filter has a fixed roex slope pa-
rameter p = 8 towards the low-frequency side. The maxi-
mum OHC gain was set to 50 dB at high frequencies, and
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Figure 3: Audiogram with pure-tone hearing threshold losses
for two simulated profiles of sensorineural hearing impair-
ment. The normal threshold is 0 dB HL.

reduced at frequencies below 500 Hz as defined by Fig. 4
in [13]. Each short-time excitation pattern was evaluated at
K = 75 cochlear “places” with best frequencies in the range
50−15000 Hz, with a resolution of 0.5 ERB.

We use the additive random noise Wt in Eq. (4) to repre-
sent the neural and perceptual variability that limits auditory
spectral discrimination. These sensory noise components
were statistically independent across both time and cochlear
“place”, with a variance adjusted to reproduce normal inten-
sity discrimination for broadband noise [10, 9].

2.6 Hearing Impairment
Auditory models were defined for two different types of hear-
ing impairment, shown in Fig. 3. In most cases the only
available data on hearing loss is the Hearing Threshold Level
(HTL), which shows the pure-tone hearing threshold at a
number of test frequencies. A threshold elevation can be
caused by several different physiological changes, but in gen-
eral these are not known individually. We have assumed that
threshold elevations are caused primarily by a loss of normal
outer hair cell gain for weak sounds. If the threshold loss
exceeded the maximal OHC gain, the remainder of the loss
was attributed to a loss of inner hair cell (IHC) sensitivity.

In our model, the loss of OHC gain automatically implies
a loss of auditory frequency resolution, because the gain is
reduced for the non-linear peak filter, and the remaining lin-
ear tail filter has a much wider response characteristic. No
additional loss of frequency resolution was assumed.

2.7 Simulated Hearing-aid Processing
A hearing aid with slow compression was simulated simply
by linear frequency-dependent amplification adapted to the
hearing loss according to the NAL-R prescription rule [3],
often used as a reference hearing-aid setting. This simulation
is realistic, as any real slow compression system would adapt
optimally to the overall level and long-term spectrum of the
speaker, and we used a speech material with a single speaker
at a fixed presentation level.
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Figure 4: Relative amount of received auditory speech in-
formation as a function of signal-to-noise ratio (SNR). The
mutual information (MI) is calculated between clean speech
HMM states and the auditory response to noisy speech, pro-
cessed by hearing aids with fast compression and with linear
amplification, adapted to two types of hearing loss. The MI
is shown in percent of the state entropy for clean speech.

A hearing aid with fast compression was simulated by
adapting the gain frequency response depending on the short-
time spectrum in each 10-ms time frame (20 ms duration
incl. overlap), independently of previous frames. However,
it would be unrealistic to adapt the gain independently at
each frequency sample, because this would reduce fine spec-
tral details. Instead, we controlled the adaptive gain by a
smoothed version of the spectrum, estimated by including
only the lowest-order cepstrum coefficients. We used either
1 or 4 coefficients to simulate generic forms of frequency-
dependent compression with either a single channel or 4
channels. Compression Ratios (CR) were set depending on
the hearing threshold loss in dB (HTL) at each frequency, as
CR = 100/(100−HT L), but limited to 1 ≤ CR ≤ 2.5. The
compression ratios were independent of input levels, because
the auditory model also assumed level-independent CR. Fi-
nally the overall linear gain frequency response was adjusted
to reproduce the compressed signal with exactly the same
long-term power spectrum as for the slow compression.

3. RESULTS AND DISCUSSION

The estimated rate of mutual information (MI) between clean
speech segment states (phonetic categories) and peripheral
auditory response to noisy hearing-aid-processed speech is
shown in Fig. 4 for the types of hearing loss shown in Fig. 3.
Here the MI results are plotted as a percentage of the source
state entropy which was 0.487 bits/frame or 48.7 bits/s. The
MI rate is clearly lower with fast compression than with
the linear amplification simulating slow compression, for all
SNR:s less than 20 dB.

The calculated results in Fig. 4 indicate that the use of
fast compression destroys more speech information than the
amount of information gained by increasing the audibility of
weak speech segments. This result might have been antici-
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pated at low SNR values, where speech audibility is limited
mainly by noise masking rather than by the hearing thresh-
old. However, the reduction of speech information is appar-
ent also at rather high SNRs.

The result should be interpreted with some caution, be-
cause we simulated a slow compression system by linear
amplification, adapted to the given speech presentation level
in an acoustic environment with only speech-shaped steady
noise and with no loud transient sounds. There are meth-
ods to combine slow compression for speech with fast tran-
sient reduction, e.g. [14], but many practical hearing-aid im-
plementations of slow-acting compression use a long release
time and short attack time, because the compressor is also in-
tended to protect the listener from sudden loud noises. Such a
system reduces the amplification of speech throughout the re-
lease period after a loud sound, and may therefore lose more
information in the weak speech components than indicated
by our simulation.

The model preferred in [5] might account better for a loss
of temporal resolution but does not include the effect of hear-
ing loss on frequency resolution. Our results may not be ap-
plicable for a listener with impaired peripheral temporal res-
olution. However, as the fast compressor degraded speech
information, assuming an ideal central detector, it seems un-
likely that it can improve speech recognition for listeners
with impaired central auditory functions.

4. CONCLUSION

We calculated the amount of speech information success-
fully transmitted through a functional model of the peripheral
auditory system of hearing-impaired listeners using hearing
aids with either fast compression or slow quasi-linear ampli-
fication, adapted to the individual hearing loss.

Although the hearing impairment was modelled mainly
as a loss of the normal fast compression in the inner ear, the
calculation showed clearly better speech-to-auditory infor-
mation transmission with linear amplification than with fast
hearing-aid compression, for speech in speech-shaped noise
at signal-to-noise ratios ranging from −10 to +20 dB.

REFERENCES

[1] R. J. Baker and S. Rosen, “Auditory filter nonlinear-
ity across frequency using simultaneous notched-noise
masking,” Journal of the Acoustical Society of America,
vol. 119, no. 1, pp. 454–462, 2006.

[2] L. Braida, N. Durlach, R. Lippman, B. Hicks, W. Rabi-
nowitz, and C. Reed, Hearing Aids - a Review of Past
Research on Linear Amplification, Amplitude Com-
pression and Frequency Lowering (Monograph no 19).
Rockville, MD: American Speech and Hearing Associ-
ation, 1979.

[3] D. Byrne and H. Dillon, “The national acoustic labora-
tories (NAL) new procedure for selecting the gain and
frequency response of a hearing aid,” Ear and Hearing,
vol. 7, pp. 257–265, 1986.

[4] S. Davis and P. Mermelstein, “Comparison of paramet-
ric representations for monosyllabic word recognition
in continuously spoken sentences,” IEEE Transactions
on Acoustics Speech and Signal Processing, vol. 28, pp.
357–366, 1980.

[5] R. P. Derleth, T. Dau, and B. Kollmeier, “Modeling
temporal and compressive properties of the normal and
impaired auditory system,” Hearing Research, vol. 159,
pp. 132–149, 2001.

[6] A. Goedegebure, “Phoneme compression. Processing
of the speech signal and effects on speech intelligibility
in hearing-impaired listeners,” Ph.D. dissertation, Eras-
mus Univ Rotterdam, 2005.

[7] B. Hagerman, “Sentences for testing speech intelligi-
bility in noise,” Scandinavian Audiology, vol. 11, pp.
79–87, 1982.

[8] T. Herzke and V. Hohmann, “Effects of instantaneous
multi-band dynamic compression on speech intelligi-
bility,” EURASIP Journal on Applied Signal Process-
ing, vol. 18, pp. 3034–3043, 2005.

[9] A. Houtsma, N. Durlach, and L. Braida, “Intensity per-
ception. XI. Experimental results on the relation of in-
tensity resolution to loudness matching,” Journal of the
Acoustical Society of America, vol. 68, no. 3, pp. 807–
813, 1980.

[10] A. Leijon, “Estimation of auditory information trans-
mission capacity using a hidden Markov model of
speech stimuli,” Acustica - Acta Acustica, vol. 88, no. 3,
pp. 423–432, 2002.

[11] T. Lunner and E. Sundevall-Thorén, “Interactions be-
tween cognition, compression, and listening condi-
tions: Effects on speech-in-noise performance in a two-
channel hearing aid,” Journal of the American Academy
of Audiology, vol. 18, no. 7, pp. 604–617, 2007.

[12] B. Moore, An Introduction to the Psychology of Hear-
ing, 5th ed. London: Academic Press, 2003.

[13] B. C. Moore and B. R. Glasberg, “A revised model of
loudness perception applied to cochlear hearing loss,”
Hearing Research, vol. 188, pp. 70–88, 2004.

[14] P. Nordqvist and A. Leijon, “Hearing-aid automatic
gain control adapting to two sound sources in the en-
vironment, using three time constants,” Journal of the
Acoustical Society of America, vol. 116, no. 5, pp.
3152–3155, 2004.

[15] A. Recio, N. C. Rich, S. S. Narayan, and M. A. Rug-
gero, “Basilar-membrane responses to clicks at the base
of the chinchilla cochlea,” Journal of the Acoustical So-
ciety of America, vol. 103, no. 4, pp. 1972–1989, 1998.

[16] S. Stadler, A. Leijon, and B. Hagerman, “An
information theoretic approach to estimate speech
intelligibility for normal and impaired hearing (poster
nr. 10),” in Interspeech 07, Antwerpen, BE, 2007.
[Online]. Available: http://www.interspeech2007.org

[17] E. Villchur, “Signal processing to improve speech intel-
ligibility in perceptive deafness,” Journal of the Acous-
tical Society of America, vol. 53, pp. 1646–1657, 1973.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP


