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ABSTRACT

As the Information Theoretic Criteria (ITC) for AR order selection
are derived under the strong hypothesis of stationarity of the mea-
sured signals, it is not straightforward to utilize them in conjunction
with the forgetting factor least-squares algorithms. In the previ-
ous literature, the attempts for solving the problem were focused on
the Akaike Information Criterion (AIC), the Bayesian Information
Criterion (BIC) and the Predictive Least Squares (PLS). This study
provides a variant of the Predictive Densities Criterion (PDC) that
it is compatible with the forgetting factor least-squares algorithms.
We also introduce a modified version of the very new Sequentially
Normalized Maximum Likelihood (SNML) criterion. Additionally,
we give rigorous proofs for results concerning PLS and SNML.

1. INTRODUCTION

In most of the practical applications, the coefficients of the autore-
gressive (AR) models are estimated by algorithms that rely mainly
on the recent observations and “forget” the past. Due to their design,
the estimators are dubbed localized, and they have been intensively
researched during the last two decades in the context of adaptive
control and signal processing [1, 2].

As the Information Theoretic Criteria (ITC) are derived under
the strong hypothesis of stationarity of the measured signals, they
cannot be utilized in conjunction with the localized estimators (LE).
Therefore, it is necessary to modify the structure selection criteria.
Few attempts for solving the problem are mentioned in the pre-
vious literature: the most in-depth approach is the one from [3],
where the Akaike Information Criterion (AIC) was re-designed for
the LE case. The celebrated Bayesian Information Criterion (BIC)
[4], which is equivalent with a crude variant of the Minimum De-
scription Length (MDL) [5] was modified in [6] such that to be
compatible with LE. We note that the expressions of BIC and AIC
based on LE have been already applied in on-line spectral estima-
tion for EEG signals [7] and in tracking of the fast varying systems
[8]. The reference [6] contains also some heuristics on the LE-based
formulae of the Predictive Least Squares (PLS) [9] and the Predic-
tive Minimum Description Length criteria.

The previous studies do not discuss how the Predictive Densi-
ties Criterion (PDC) can be made compatible with the LE. Note that
PDC was derived in [10] by resorting to Bayesian predictive den-
sities, and its form coincides with another criterion introduced by
Rissanen in [11].

The Sequentially Normalized Maximum Likelihood (SNML)
was proposed very recently as a new model selection rule [12]. The
major advantage of the SNML is given by its normalizing coeffi-
cient that can be computed easier than for the ordinary NML whose
evaluation for AR and ARMA models is discussed in [13].

The aim of this study is to provide versions of the PDC and
SNML criteria that can be employed in combination with the forget-
ting factor least-squares algorithms. Additionally, we give rigorous
proofs for results concerning PLS and SNML.

This work was supported by the Academy of Finland, project No.

113572, 118355 and 213462.

The rest of the paper is organized as follows. The most im-
portant ITC that have been designed for stationary AR models are
briefly revisited in Section 2. The definitions and notations con-
cerning the forgetting factor least-squares algorithms are given in
Section 3. They are further used in Section 4 to modify the ITC
and to investigate their main properties. The order selection per-
formances of the modified ITC are demonstrated in Section 5 for a
piecewise AR process.

2. ORDER SELECTION CRITERIA FOR STATIONARY
AR MODELS

We consider the order-k AR model,

yt +a1yt−1 + · · ·+akyt−k = εt , (1)

where εt is zero-mean white gaussian noise of variance σ2. We em-

ploy the notation a = [a1, . . . ,ak]
⊤ for the coefficients of the model,

and the symbol ⊤ denotes transposition.
The available measurements are y1, . . . ,yn, and we choose

an integer m such that k < m ≪ n. Let m′ = m − (k + 1) and

t ∈ {m, . . . ,n}. Next we define ȳt = [yt , . . . ,ym′+1]
⊤ and x̄t =

[yt−1, . . . ,yt−k]
⊤, with the convention that yi = 0 for i < 1. Addi-

tionally Xt = [x̄t , . . . , x̄m′+1]. For all possible values of t, the number
of columns of Xt is larger than k.

Given y1, . . . ,yt , we estimate the parameters of the AR model
by minimizing the least squares criterion

t

∑
i=m′+1

(

yi +a⊤x̄i

)2
, (2)

and consequently

ât = −VtXt ȳt , (3)

with Vt =
(

XtX
⊤
t

)−1
. Moreover, Rt

∆
= ȳ⊤t

(

I−X⊤
t VtXt

)

ȳt , and I
is the identity matrix. The equations above are equivalent with the
prewindow method for m = k + 1, and with the covariance method

for m = 2k +1 [2]. We denote ct = x̄⊤t Vt−1x̄t , and because Vt−1 is
positive definite we have ct > 0. Lemma 2(i) from [14] leads to the
identity

|Vt |/|Vt−1| = 1/(1+ ct), (4)

where the notation | · | is used for the matrix determinant. We utilize
the following representations of the data

yt + â⊤t−1x̄t = et , (5)

yt + â⊤t x̄t = êt . (6)

Remark in the definitions above that Rt is the usual residual sum
of squares, et is the forward a priori prediction error, and êt is the
forward a posteriori prediction error [2].
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The well-known BIC has the expression [4],

BIC(k) =
n

2
ln

Rn

n
+

k +1

2
lnn, (7)

and PLS [9] is given by

PLS(k) =
n

∑
i=m+1

e2
i . (8)

Next we elaborate on the PDC formula [10] as a preparatory step
for the results of the next Sections:

PDC(k) = − ln
n

∏
i=m+1

(

1√
2π

|V−1
i−1|1/2

|V−1
i |1/2

Γ
(

i−m+1
2

)

Γ
(

i−m
2

)

)

− ln
n

∏
i=m+1

(Ri−1/2)(i−m)/2

(Ri/2)(i−m+1)/2
(9)

= − ln

(

1

π(n−m)/2

Γ
(

n−m+1
2

)

Γ
(

1
2

)

R
1/2
m

R
(n−m+1)/2
n

)

+ ln
n

∏
i=m+1

(1+ ci)
1/2 (10)

≈ n

2
ln

Rn

n
+

1

2

n

∑
i=m+1

ln(1+ ci)+
1

2
lnn. (11)

The equation (9) is obtained by utilizing the formula (7) from [10]
and by taking m = 2k +1. After using the identity (4) together with
some simple manipulations we get (10). By applying the Stirling
approximation for the Gamma function [15], we have

lnΓ

(

n−m+1

2

)

≈ 1

2
ln(2π)+

n−m

2
ln

n−m+1

2
− n−m+1

2
.

Next we drop the terms that do not depend on n, even if they depend
on k. Since m ≪ n we employ the approximation 1/(n−m) ≈ 1/n.
In (11), we neglect also the term n

2 ln(2πexp(1)).
We consider the SNML formula from [12, 16], and for writing

it more compactly we ignore the term n
2 ln(2πexp(1)):

SNML(k) =
n

2
ln

(

1

n

n

∑
i=m+1

ê2
i

)

+
n

∑
i=m+1

ln(1+ ci)+
1

2
lnn. (12)

The asymptotic analysis reveals the relationship between the four
criteria. For example, it was shown in [6] that

PLS(k) = Rn +σ2k lnn(1+o(1)) , (13)

and the asymptotic equivalence between PLS and BIC was proven
in [17]. In [16], it was verified the asymptotic equivalence between
SNML and BIC, and the following limit was obtained as part of the

proof: limn→∞
∑n

i=m+1 ln(1+ci)
lnn = k. The last result together with (11)

lead to the equivalence between PDC and BIC for n large.

3. NON-STATIONARY CASE

When the hypothesis of stationarity is not verified, the loss function
(2) is replaced by [6]

t

∑
i=1

λt−i
(

yi +a⊤x̄i

)2
. (14)

The forgetting factor λ is positive and less than one, and the criterion
(14) is minimized by

âλ,t = −Vλ,t

t

∑
i=1

λt−ix̄iyi, (15)

where Vλ,t =
(

∑t
i=1 λt−ix̄ix̄

⊤
i

)−1
.

We choose m such that the inverse Vλ,t exists for t = m, and
we show that such a selection guarantees the inverse Vλ,t to exist

for all t ≥ m. It is useful to denote Aλ,t = ∑t
i=1 λt−ix̄ix̄

⊤
i , where

t ∈ {m, . . . ,n}. According to the Theorem 8.1.8 from [18], there
exists µ ∈ [0,1] such that the smallest eigenvalue of Aλ,t , m < t ≤ n,

can be expressed as λℓλ,t−1 +µ‖x̄t‖2, where ℓλ,t−1 is an eigenvalue
of Aλ,t−1. The observation ℓλ,t−1 > 0 concludes the proof.

For t ∈ {m+1, . . . ,n}, we consider the data representations that
are similar with (5) and (6):

yt + â⊤λ,t−1x̄t = eλ,t , (16)

yt + â⊤λ,t x̄t = êλ,t . (17)

Let Rλ,t be the value of the loss function (14) evaluated at a = âλ,t .
Relying on results from [2], we can easily write the formulae:

Rλ,t = λRλ,t−1 + e2
λ,t/(1+ cλ,t) (18)

= λRλ,t−1 + e2
λ,t(1−dλ,t), (19)

|Vλ,t |
|Vλ,t−1|

=
1

λk(1+ cλ,t)
=

1−dλ,t

λk
, (20)

where cλ,t = λ−1x̄⊤t Vλ,t−1x̄t and dλ,t = x̄⊤t Vλ,t x̄t . Since Vλ,t is
positive definite, we get for all t ≥ m,

0 < dλ,t < 1. (21)

The ITC given in (7),(8),(11),(12) are obtained under the hypothesis
that the AR coefficients are estimated with (3). In the next Section
we investigate how the ITC can be re-designed to use the estimation
(15) instead of (3).

4. MODIFIED INFORMATION THEORETIC CRITERIA

The traditional way of modifying BIC is to replace in (7), Rn with

Rλ,n, and n with the effective number of samples ne f = ∑n−1
i=0 λi [1].

Because limn→∞ ne f = n∞
e f = 1/(1− λ), the formula employed in

most of the applications is [6, 8]

BICλ(k) =
n∞

e f

2
ln

Rλ,n

n∞
e f

+
k +1

2
lnn∞

e f . (22)

In [6], the PLS criterion (8) is altered such that

PLSλ(k) =
n

∑
i=m+1

λn−ie2
λ,i. (23)

To gain more insight on (23), we resort to a practice that it is com-
mon for the analysis of the adaptive algorithms, namely to examine
the behavior of the estimators under the time-invariant conditions.
We assume:

(A1) y1, . . . ,yn are outcomes of the gaussian stationary AR process

defined in (1), for which E[x̄t x̄
⊤
t ] = C > 0.

(A2) For λ close to one and n → ∞, we have:

n

∑
i=1

λn−ix̄ix̄
⊤
i ≈ G, (24)

n

∑
i=1

λn−ix̄ix̄
⊤
i ε2

i ≈ H, (25)

where G = 1
1−λ

C and H = σ2

1−λ
C.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



The assumption (A2) is used frequently in the analysis of the adap-
tive algorithms. The interested reader can find in [1] and the refer-
ences therein the conditions for which (A2) is verified.

Proposition 4.1. If (A1) and (A2) are satisfied, then

PLSλ(k) = Rλ,n +σ2k (1+O(1)) . (26)

Proof. The most important ideas of the proof are inspired by [14,
17, 19], where the analysis is restricted to the case λ = 1. The
case λ ∈ (0,1) poses supplementary difficulties, and we give in the
Appendix A.1 the results that lead to (26). More precisely, (26) is
readily obtained from Lemma A.1, Lemma A.4 and Lemma A.5.

Remark that (A1) guarantees the model to be the correct one.
The key point in practical applications is to evaluate PLSλ for var-
ious values of k, and to choose the order that minimizes the crite-
rion. Under mild conditions, a result similar with Proposition 4.1
can be also obtained for incorrect models. As the proof is lengthy,
we do not include it in this note. More importantly, from the equa-
tion (13) we know that lnn∞

e f should be a factor in the penalty term

of PLSλ. Unfortunately, the second term of (26) does not contain
such a factor, which prevents us to conclude that PLSλ and BICλ
are asymptotically equivalent. Therefore we expect PLSλ to have
modest performances. This was noticed heuristically in [6], where
the following ad-hoc criterion was proposed to replace PLSλ:

SRMλ(k) =
n

∑
i=m+1

λn−ie2
λ,i + k.

In the reference [6], it was also coined the name SRM of this crite-
rion.

The preparatory results (9)-(11) suggest the following version
of the PDC:

PDCλ(k) =
n∞

e f

2
ln

Rλ,n

n∞
e f

− ln
n

∏
i=m+1

|V−1
i−1,λ|

1/2

|V−1
i,λ |1/2

+
1

2
lnn∞

e f (27)

=
n∞

e f

2
ln

Rλ,n

n∞
e f

+
1

2

n

∑
i=m+1

ln
(

(1+ cλ,i)λ
k
)

+
1

2
lnn∞

e f . (28)

The expression (28) was derived from (27) by utilizing (20). For the
asymptotic analysis, it is very convenient to use (27): the penalty

term is given by 1
2 ln

|V−1
n,λ|

|V−1
m,λ|

+ 1
2 lnn∞

e f = k+1
2 lnn∞

e f + 1
2 ln

|C|
|V−1

m,λ|
. The

last equality can be easily verified by resorting to (24), and it shows
that PDCλ and BICλ are equivalent for n∞

e f large.

Based on (12), it is natural to define

SNMLλ(k) =
n∞

e f

2
ln

(

1

n∞
e f

n

∑
i=m+1

λn−iê2
λ,i

)

+
n

∑
i=m+1

ln
(

(1+ ci)λ
k
)

+
1

2
lnn∞

e f , (29)

which leads to

Proposition 4.2. If (A1) and (A2) are satisfied, then

SNMLλ(k) =
n∞

e f

2
ln

Rλ,n

n∞
e f

− k

2
(1+O(1))

+k lnn∞
e f (1+O(1))+

1

2
lnn∞

e f . (30)

Proof. The result is a straightforward consequence of Lemma A.6

from the Appendix A.2, and the identity ∑n
i=m+1 ln

(

(1+ ci)λ
k
)

=

k lnn∞
e f + ln

|C|
|V−1

m,λ|
that we have obtained in the analysis of the

penalty term for PDCλ.

The “big-O” terms from (30) make difficult the comparison be-
tween the asymptotic result of Proposition 4.2 and the BIC formula
(22). To gain more insight, the performances of the modified ITC
are compared in the next Section by resorting to simulations.

5. EXPERIMENTAL RESULTS

To illustrate the time-varying case, we consider a piecewise AR
process that was also used in [6]. The number of samples is
n = 4000, and the break points are n( j) = 1000 j for j ∈ {1,2,3}.

We take conventionally n(0) = 0 and n(4) = n. Hence the outcomes

yt of the process are given by

yt +a j1yt−1 + · · ·+a j,k( j)
yt−k( j)

= ε jt , (31)

where j ∈ {1,2,3} and t ∈ {n( j−1) + 1, . . . ,n( j)}. The AR order

is k( j) within the j-th frame, and the noise sequence ε jt is white

gaussian with mean zero and unitary variance. More precisely,
k(1) = 0, k(2) = 6, k(3) = 8 and k(4) = 0. The coefficients of the

order-6 AR process within the second frame are [-0.4397 -0.1316

0.0905 -0.1053 -0.2814 0.5120]⊤, and the coefficients of the order-
8 AR process within the third frame are [-0.9896 0.8097 -0.8912

0.6736 -0.7575 0.5850 -0.6077 0.5220]⊤. The interested reader can
find in [6] the spectra for the two AR models and some details on
how they have been constructed to mimic the speech spectrum.

At every sample point, the ITC must be computed for each or-
der between Kmin = 0 and Kmax = 15. We choose m = 2Kmax, and
we resort to the fast implementation of the forgetting factor least-
squares algorithm that it is based on predictive lattice filters [20].
We take λ = 0.99, which is equivalent with n∞

e f = 100. The value

of the forgetting factor is the same as in [6]. For all the ITC that
have been discussed in the previous Sections, we plot in Figure 1
and Figure 2 the percentage of correctly estimating the true order of
the piecewise AR process (31). The number of runs is 5000.

The results shown in Figure 1 are in perfect agreement with
those reported in [6]. The performances of PLSλ are modest, hence
the empirical evidence supports the claim of the Proposition 4.1.
The capabilities of SRMλ are superior to those of PLSλ, but SRMλ
compares favorably with BICλ only in the second frame. We also
noticed during the experiments that the number of correct order es-
timations by SRMλ and by PLSλ can become almost equal if the
variance of the driven noise for the piecewise AR process is not uni-
tary. Among the investigated ITC, SRMλ is the only one affected
by the variance of the driven noise.

Note in Figure 2 that SNMLλ and PDCλ respond rapidly to an
increase in order, but slowly when the order decreases. BICλ is very
good in estimating the structure for the zero-order model.

For the Figures 3 and 4, the experimental settings are the same
like in Figures 1 and 2, except the forgetting factor that is taken
λ = 0.995 (n∞

e f = 200) instead of λ = 0.99 (n∞
e f = 100). Since the

memory is longer than in the previous case, SNMLλ, PDCλ and
BICλ improve their accuracy during the frames when the model
does not change, but they are less sensitive to parameter changes.
This observation is in line with the principle of uncertainty [1].

6. CONCLUSION

Transforming the ITC to become compatible with the forgetting
factor least-squares algorithms is not a trivial task, especially for
criteria that do not involve explicitly the residual sum of weighted
squares Rλ,n. In our study, we resorted to asymptotic analysis for
decomposing each criterion into the goodness-of-fit term and the
penalty term. The performances of various ITC have been illus-
trated by simulations with a piecewise AR model.
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Figure 1: Percentages of the true order estimations for BICλ (black),
PLSλ (blue) and SRMλ (red). The forgetting factor is λ = 0.99.
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Figure 2: Percentages of the true order estimations for BICλ (black),
SNMLλ (red) and PDCλ (blue). The forgetting factor is λ = 0.99.

A. APPENDIX

A.1 Auxiliary results for Proposition 4.1

Lemma A.1. The following identity is verified:

PLSλ(k) =
n

∑
i=m+1

λn−ie2
λ,i = Rλ,n +

3

∑
j=1

S j, (32)

where S1
∆
= ∑n

i=m+1 λn−idλ,iε
2
i , S2

∆
=

∑n
i=m+1 λn−idλ,i

[

(

âλ,i−1 −a
)⊤

x̄i

]2
and S3

∆
=

2∑n
i=m+1 λn−idλ,i

[

(

âλ,i−1 −a
)⊤

x̄i

]

εi.

Proof. For each t ∈ {m + 1, . . . ,n}, we consider the equation (19)
and we multiply it by λn−t . We sum together all the resulting equal-
ities, and the identity

n

∑
i=m+1

λn−ie2
λ,i = Rλ,n −λn−mRλ,m +

n

∑
i=m+1

λn−idλ,ie
2
λ,i (33)

is obtained. As λn−mRλ,m ≈ 0 asymptotically, we ignore this term
from the identity above. This observation together with (1) and (16)
lead to (32).
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Figure 3: Percentages of the true order estimations for BICλ (black),
PLSλ (blue) and SRMλ (red). The forgetting factor is λ = 0.995.
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SNMLλ (red) and PDCλ (blue). The forgetting factor is λ = 0.995.

Lemma A.2. For each i > m,

Vλ,i =
1

λ
Vλ,i−1 −

1

λ2

Vλ,i−1x̄ix̄
⊤
i Vλ,i−1

1+ cλ,i
, (34)

x̄⊤i Vλ,i =
x̄⊤i Vλ,i−1

λ(1+ cλ,i)
. (35)

Proof. Both identities are straightforward applications of the matrix
inversion lemma [2].

Lemma A.3. We have the following results:

lim
n→∞

n

∑
i=m+1

λn−idλ,i < ∞, (36)

lim
n→∞

S1 = lim
n→∞

n

∑
i=m+1

λn−idλ,iε
2
i < ∞ a.s., (37)

lim
n→∞

n

∑
i=m+1

λn−i
(

λn−ix̄⊤i Vλ,nx̄i

)

ε2
i < ∞ a.s. (38)

Proof. Based on (21), we get immediately ∑n
i=m+1 λn−idλ,i <

∑n
i=m+1 λn−i = λm+1−λn+1

1−λ
, and (36) is obtained by applying the
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comparison test for convergence. The result (37) is a direct con-
sequence of (36) and Lemma 2(iii) from [14]. Equation (34) im-

plies λn−ix̄⊤i Vλ,nx̄i ≤ x̄⊤i Vλ,ix̄i for all i ∈ {m + 1, . . . ,n}, hence

∑∞
i=m+1 λn−i

(

λn−ix̄⊤i Vλ,nx̄i

)

ε2
i ≤ ∑∞

i=m+1 λn−idλ,iε
2
i < ∞ a.s.

Lemma A.4. For n large, S2 +S3 = O(S1).

Proof. From (1) and (15) we have S2 =

∑n
i=m+1 λn−idλ,i

[

x̄⊤i Vλ,i−1 ∑i−1
j=1 λi−1− jx̄ jε j

]2
, and

from (21) we get 0 ≤ S2 ≤ S4, where S4
∆
=

∑n
i=m+1 λn−i

[

x̄⊤i Vλ,i−1 ∑i−1
j=1 λi−1− jx̄ jε j

]2
. Next we consider

Dλ,i
∆
=
[

∑i
j=1 λi− jx̄⊤j ε j

]

Vλ,i

[

∑i
j=1 λi− jx̄ jε j

]

. Let limn→∞ dλ,n =

dλ. Note that dλ ∈ (0,1) (see also (20)). After some simple
manipulations that use Lemma A.2, we apply Lemma 2(iii) from

[14] to obtain (1−dλ)S4(1+o(1)) =−Dλ,n +λn−m−1Dm +S1. As
a consequence of (38), limn→∞ Dλ,n < ∞, and the equation above

leads to S2 = O(S1). We utilize the Cauchy-Schwarz inequality to

get [S3/(2S1)]
2 ≤ S2/S1, which concludes the proof.

Lemma A.5. For n large, S1 = kσ2 +O(1).

Proof. (a similar reasoning can be found at p.7 in [17]) Equa-
tion (24) guarantees for any δ > 0 there exists i0 such that for

all i > i0 the following holds: ‖Vλ,i − G−1‖ ≤ δ/‖G‖. As G

is positive definite, we also have for all x̄ ∈ ℜk×1, ‖x̄‖2/‖G‖ ≤
x̄⊤G−1x̄ . Note that ‖ · ‖ denotes the 2-norm. Simple calcu-

lations lead to (1 − δ)S5 ≤ ∑n
i=i0

λn−idλ,iε
2
i ≤ (1 + δ)S5, where

S5
∆
= ∑n

i=i0
λn−ix̄⊤i G−1x̄iε

2
i . Tacking δ → 0, we get

S1 = tr

(

G−1
∞

∑
i=m+1

λn−ix̄ix̄
⊤
i ε2

i

)

+O(1)

= tr(G−1H)+O(1)

= kσ2 +O(1),

where tr(·) denotes the trace of the matrix in the argument.

A.2 Auxiliary result for Proposition 4.2

Lemma A.6. The following results hold:

n

∑
i=m+1

λn−iê2
λ,i = Rλ,n −S1(1+O(1)), (39)

where S1 is defined in Lemma A.1.

ln

(

1

n∞
e f

n

∑
i=m+1

λn−iê2
λ,i

)

= ln
Rλ,n

n∞
e f

− k

n∞
e f

(1+O(1)). (40)

Proof. Because ê2
λ,i = (1− dλ,i)

2e2
λ,i for all i ∈ {m + 1, . . . ,n} [2],

the equation (33) implies ∑n
i=m+1 λn−iê2

λ,i = Rλ,n − λn−mRλ,m −

∑n
i=m+1 λn−idλ,ie

2
λ,i + S6, where S6

∆
= ∑n

i=m+1 λn−id2
λ,ie

2
λ,i. We

know from Lemma A.1 that ∑n
i=m+1 λn−idλ,ie

2
λ,i = ∑3

j=1 S j,

and from Lemma A.4 we have S2 + S3 = O(S1). The in-

equality (21) leads to 0 < S6 < ∑n
i=m+1 λn−idλ,ie

2
λ,i. Ad-

ditionally λn−mRλ,m ≈ 0, and the result (39) is readily

obtained. Then ln

(

1

n∞
e f

n

∑
i=m+1

λn−iê2
λ,i

)

= ln

(

Rλ,n

n∞
e f

)

+

ln



1− k

n∞
e f

σ2

Rλ,n

n∞
e f

(1+O(1))



, which is a consequence of (39) and

Lemma A.5. To get (40), we use
Rλ,n

n∞
e f

≈ σ2 and ln(1−ξ) ≈ −ξ for

|ξ| close to zero.
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