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ABSTRACT

This paper proposes an integrated method for the blind separa-
tion and dereverberation of convolutive audio mixtures. The pro-
posed method is based on multichannel blind deconvolution in the
frequency domain. Significant points to be emphasized are as fol-
lows: (1) The objective function for optimizing the deconvolution
system is derived based on a time-varying all-pole model of source
signals, which was proven to be effective for single source derever-
beration. This provides the proposed method with the capacity for
both separation and dereverberation. (2) An efficient optimization
algorithm is developed. This algorithm is realized by decomposing
the deconvolution system into an instantaneous separation part and
a multichannel auto-regressive part. Illustrative experimental re-
sults with an RTgg of 0.6 seconds are reported, where the proposed
method showed superiority over a conventional frequency-domain
blind separation method.

1. INTRODUCTION

When recording sound with microphones in a room, acoustic sig-
nals emitted from sound sources are often reverberated and cou-
pled with each other. The acoustic signals observed at the micro-
phones are thus linear convolutive mixtures of the source signals.
Recovering the individual source signals from the observed signals,
namely the blind separation and dereverberation of the convolutive
mixtures, will be useful for many audio applications.

There are two common approaches to this task. One is blind
source separation (BSS) in the frequency domain. It is well known
that the frequency-domain BSS approach fails in separation when
reverberation time is long [1]. The other is multichannel blind de-
convolution (MBD), which may be applied either in the time do-
main [2, 3] or in the frequency domain [4]. Ideally, the MBD ap-
proach is able to separate and dereverberate the convolutive mix-
tures even under such highly reverberant conditions. In reality,
however, such conditions oblige us to use high order deconvolution
systems. Since most conventional MBD methods are based on the
gradient descent method, the order increase results in poor conver-
gence performance and large computational cost. In addition, the
conventional MBD methods cannot achieve dereverberation since
the objective functions employed by these methods provide insuffi-
cient information about the temporal structures of source signals.

Recently, on the other hand, we investigated the single source
dereverberation. In our previous reports, we derived objective
functions for the dereverberation based on a time-varying all-pole
(TVAP) model of a source signal (see, for example, [5]). Optimiz-
ing dereverberation systems so that one of the objective functions is
maximized led to high dereverberation performance.

In this paper, we embed the TVAP source model in the MBD
approach. This enables us to achieve both the blind separation and
dereverberation of convolutive mixtures even under highly reverber-
ant conditions. The main results are as follows.

1. We develop a method for blind separation and dereverberation
in the framework of the maximum likelihood (ML) estimation.
The statistical model of observed signals is defined based on the
TVAP source model. The parameters of this observation model

consist of all-pole source parameters and matrices of a decon-

volution system. These parameters are optimized to maximize

the likelihood function.

2. We propose to decompose the deconvolution system into an in-
stantaneous separation part and a multichannel auto-regressive
(AR) part. This decomposition allows us to obtain an efficient
optimization algorithm that comprises three analytically calcu-
lated optimization steps.

The proposed method is a form of integration of blind separa-
tion and dereverberation in the sense that the instantaneous separa-
tion system and the multichannel AR system are optimized by us-
ing a common objective function (i.e. the likelihood function). In-
deed, if the AR part is forced to be an identity system, the proposed
method reduces to a new frequency-domain BSS method based on
second-order statistics. On the other hand, if the instantaneous sep-
aration part is fixed at an identity system, the proposed method re-
duces to a frequency-domain dereverberation method similar to [6].

2. BLIND SEPARATION AND DEREVERBERATION

Suppose there are M sound sources and M microphones. Let
s™)(n) and y(™2) (n) denote the m;-th source signal and the my-
th observed signal, respectively. We summarize the source sig-
nals and the observed signals in vectors, respectively, as s(n) =
s (), s ()" and y(n) = pN (), .yM (n)]", where
superscript 7' stands for non-conjugate transposition. The observed
signal vector, y(n), is generated by

y(n) =Y B(k)"s(n—k), (1)
k

where superscript H stands for conjugate transposition and the
(mq,my)-th entry of B(k)H is the k-th coefficient of the room trans-
fer function between the m -th source and the m;-th microphone.

The proposed method postulates time-frequency domain sig-
nal representation. Short-time Fourier transform (STFT) is used
for the time-frequency analysis. Unlike conventional frequency do-
main BSS methods such as [7], the proposed method uses a short
time frame of about 30 milliseconds in order to utilize the TVAP
source model effectively.

Let SE'I"') and YITZ) denote the spectral component of (") (r)

and that of y("2)(n), respectively, at the -th frame and the I-th
frequency band. We summarize the source spectral components
and the observed spectral components in vectors, respectively, as

1 M 1 M
8 = [S;Z),~~~ ,S[(J )]T and y,; = [thl)f" ,Y[(J )]T. We assume
that the sequence of the source spectral component vectors in the
I-th frequency band can be recovered with causal finite impulse re-

sponse (FIR) filters of order K; as
K, u
si0=Y Wiyt )
k=0

We admit that (2) is not an exact inverse of mixing model (1) due
mainly to its causality. However, by restricting the deconvolution
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system to be causal, it is possible to develop an effective optimiza-
tion algorithm. Therefore, this inverse model would serve as a good
starting point for integrating blind separation and dereverberation.

Now suppose that we observe the spectral sequences at
frames t = 0,---,T — 1. We collectively represent the observed
spectra and the corresponding unknown source spectra as % =
{Yrito<i<r—10<i<-1 and & = {8, }o<i<T-10<1<L-1, respec-
tively, where T is the number of frames and L is the number of
frequency bands. The task of blind separation and dereverbera-
tion is defined as setting up the deconvolution system parameters,
W = {{Wr,}o<k<k, Yo<i<r—1, so that the unknown source spectra,
&, are recovered.

3. STATISTICAL FORMULATION

In this section, we formulate the blind separation and dereverbera-
tion task as a maximum likelihood (ML) estimation task to set up
an objective function for optimizing a deconvolution system.

3.1 Source model

Fourmulation as an ML estimation task requires a source signal
model. Here, we use the TVAP source model, which may allow us
to achieve both separation and dereverberation unlike conventional
source models such as the non-Gaussian independent and identi-
cally distributed (i.i.d.) model. The TVAP source model assumes
the following conditions. These assumptions have been widely ac-
cepted in the literature, especially for speech signals.

1. The power spectral density (PSD) of each source signal is an all-
pole form. Let s)L,(m) () denote the PSD of the m-th source sig-

nal at the ¢-th frame and angular frequency . Then, Sl,<m) (o)
is represented as

(m)
M) = )
A" (e P
A;m) (2) =1 —afﬁ"lq)zfl — 7_057,4;)[1)’ 4)
where {a%), e ,at(_”;)} and Sv,(m) are called linear predictor co-

efficients (LPCs) and a prediction residual, respectively.
2. Each source spectral component S (T)

,; follows a complex Gaus-

sian process with mean O and variance Sﬁ,t<m) (2ml/L). There-
fore, we have

S gl

) 7a[7P y sVt

= (80,4 2ml/L)}, (5)
where Nc{x;p, X} is the PDF of a complex Gaussian random
variable  with mean g and covariance matrix X. If the dimen-
sion of & is D, the PDF is defined as [8]

Ne{zpu, X} = exp{—zfx " 'a}. (6)

1
7P det™

3. For any m, S,<]m[>, and St<:nl>2

(tl 711) = (f2712)~
In addition, we assume the following condition as regards the
relationship between spectral components of different sources.

are statistically independent unless

4. If my # my, S;Z'ﬁ and S;zmli) are statistically independent for any

(t1, 11,12, 12).

The most important property of the TVAP source model is that
the PSD varies every short time frame. It was shown in [6] that the
power spectral time-variance plays an important role in accomplish-
ing dereverberation. Note that the TVAP source model is different
from the time-invariant auto-regressive source model of [9] and the
nonstationary source signal model with a relatively long time frame
used in [10].

H
GKI.I

Figure 1: Schematic diagram of forward model.

3.2 Equivalent Forward Model

In order to derive the statistical observation model, we transform
inverse model (2) into a forward model as follows. (2) is rewritten
as

K;
S11= W({Iz <yt,l + Z W()j[HW](rl:llytfk,l>~ @)
k=1

Rewriting (7) by using W; = Wy ; and Gy ; = Wk.,lWofll yields

K;

Yr1 = Z Gi’,,ytfk,z X (8
k=1

@ =W, s ©)

Now, let us represent the m-th entry of x;; by Xt(‘;"). (C))

means that St(‘ll>,~-~ ,S<M) are mixed together into Xt<_;),-~- ,Xt<_}lw)

o
with frequency-band dependent mixing matrix WfH . Then, by (8),
these mixtures are further convolutively mixed via the multichannel
AR system G;(z) = (I — Z‘,kK’Zl GkHJz’k)*l. In this sense, the set of
(8) and (9) defines the forward model that generates the observed
spectral component vector ¥, ; from the source spectral component
vector 8; ;. This forward model is depicted in Figure 1. We here-
after call W; and Gy ; a separation matrix and a regression matrix,
respectively. Note that this model is an extension of the MIMO-AR
model [11] to the case of complex numbers.

3.3 Maximum Likelihood Estimation

Based on the above setup, the probability density function (PDF)
of an observed spectral component vector conditioned on its past
sequence is given by

P('.'/t,l|yt71.,l7 T K!}th,,l;G))

LI 2N\ -]
—te{ys ¥ Gy (Wan(55) W) ) a0
k=1

where
(@) = diag (A (@), A (@)} an
and O is the set of all parameters. Specifically, ® is defined as

®:{s®7 w®7 g®}: (12)
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where
©={a" ) " Yimemozi<r1 (13)
wO® ={Wi}o<i<r1 (14)
¢® ={{Gr 1 }1<i<k Yo<i<r—1- 15)

5O, vO, and (O are sets of source parameters, separation matrices,
and regression matrices, respectively.

As described in Section 2, the goal of the blind separation and
dereverberation task is to estimate separation matrices ,,® and re-
gression matrices (@, (recall that ,,® and ;O collectively provide
the same information as deconvolution-system parameters #°). On
the other hand, the PDF of y,; depends on (® as well as ,,® and
¢® as shown in (10). Therefore, we estimate all the parameters in
0 (= {90, ,0, ;0}) by using the ML estimation method.

The ML estimation method maximizes the log likelihood func-
tion .Z(0; %) = log p(#;®) with respect to parameter set . By
using (10), the log likelihood function is written as

L-1T-1 _
= 5, I {owaa(mon () ")
27l
( Zleyt kl) VVl_sAt< n) WzH

(ytz—ZGk,yf )} (16)

The proposed algorithm for maximizing (16) is described in Sec-
tion 4.

4. PROPOSED ALGORITHM

We maximize log likelihood function (16) by using the coordinate
ascent method. This method iteratively updates the estimate of ©.
Let X@)@, g@)<’>, and w(:)(’) denote the estimates of (@, O, and
w®, respectively, after the i-th iteration. Each iteration comprises
the following three maximization steps:

LB+ :argmax,?(@);@)|g®:g®(i)w®:w®@ an

g@)<i+1> =argmax.Z(0:%)| o_ o), 0-,060 (18)
8

W(:)(i+1) :argrgax.,?(@);ﬁ?/)|Y®:Y®(l+.)w®:g®@+.). (19)

Below, we derive algorithms for (17), (18), and (19).

4.1 Update of source parameters

Source parameters (O are updated as follows. Since we now

have the tentative estimates of regression matrices, WG)(i) =
{Wl<l>}0§l§L—1, and those of separation matrices, gG)(i) =

{{GA](;}}]S](S]([}OSISL,], we can estimate source spectra % =
{S)Srln)}]<m<M 0<t<T—1,0<I<L—1 by substituting W<l> and él@l into
(8) and (9). We denote the estimate of st l) by St< l> By applying

linear predictive analysis to {St I }OSIS 11 for each source m and
frame ¢, we obtain the updated source parameters, 5@<i+]).

4.2 Update of regression matrices

It may be found that all regression matrices for the /-th frequency
band, Gy, , Gk, , that maximize log likelihood function (16) de-
pend on each other. In order to treat them jointly, let us put all the

entries of the regression matrices related to the /-th frequency band
into a vector as

91 =[911:-9K,.1]1 xp2k, (20)
nT mT
g =lay) 0l e, @

where g,g?) denotes the m-th column of Gy ;. By using g, the term

Z,’{(’: 1 GZ Yi—k, in (16) is rewritten as

K;
Y Gy =Y 19/, (22)
k=1
where
Yo =[G-10 UKl lmsoark, (23)
T
Yk o
Yk = . 24)
T
0 y[,kJ MxM?

By substituting (22) into (16) and then organizing the resultant
equation with respect to g;, we obtain

s 27l
L(©:) ==Y (Y1~ Yi-129/") VVIYAt( 7 )
=0
H H
x W (y.; — Yi_1,9]") + constant. (25)
9;”” that maximizes (25) under conditions (® = ;©(*+!) and

w® = W(:)@ is easily obtained as

r T-1 S D) A (eD) (27N L !
a0 =T 0. () <w,<>>”mz>

=0 L
where
A (i+1) _
sA (@) = sA(0)] 0=+ @7
Vectors gé’*”,... ,gé’j” constitute the updated estimate of (O,

namely gé(i+]).

4.3 Update of separation matrices

A necessary condition for W; to maximize log likelihood function
(16) is

102(0;%) _ 2rl
s g el ()
=0. (28)
(28) is rewritten as
17! 2ml
- Z{W, zali Wik (T0) }:IM, 29)

where Ij; stands for the M-dimensional identity matrix. For any
number of microphones M, (29) may be solved by using, for exam-
ple, the quasi-Newton method. Instead, we here describe an alterna-
tive efficient algorithm for solving (29) for the stereo microphones,
namely where M = 2.
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Figure 2: Diagram of algorithm for solving (32) and (33).

(m)

In order to simplify the notation, we define Ocﬁ" as
a7 = 2" 2m1 /L) (30)
Substituting (30) into (29) yields
VN g, (1) (2)
+ ¥ (W @fiwdiag(a)) o)V)=n. 6D
1=0
Condition (31) can be split into the following two conditions:
Hp(1 1 *
Wi R W = {0 *} (32)
Hp(2) * 0
Wi'R| W’:{* 1}, (33)
where « stands for any number, and
T—1
n_ 1 1
R =5 T ap)eal] (34)
r="
T—1
2 1 2
RP =Y aVa, 2t (35)
r="

The set of equations (32) and (33) can be solved according to the
following algorithm, which is also illustrated in Figure 2.

(1

1. Calculate the inverse square root of R; ’, which satisfies

VARVY, = 1. (36)

2. Find unitary matrix E; such that
EFVHRPVE, = diag{d",d*}. 37)

Since VIH R; )V[ is an Hermitian matrix, E; is obtained via eigen-
decomposition.
3. Then, we obtain W; as

W, =V E

1 0
—1f 38
0 4! (38)

The estimate of unmixing matrix W; after the (i 4 1)-th iteration,
WZOH), is obtained by letting ;@ = S@(Hl) and ;O = g(:)<i+1> in
(34) and (395).

After VAVZOH) is obtained for all /, the scales and permutations
of the unmixing matrices are aligned. The scale alignment is per-
formed based on the minimal distortion principle [12]. The permu-
tation alignment is done by using the method described in [7].

Thus, the derivation of the proposed algorithm is completed. It
is noteworthy that if we force regression order K; to be 0 for any
1, the proposed method reduces to a new frequency-domain BSS
method based on second-order statistics (SOS).

5. EXPERIMENTAL RESULTS

We show three experimental results that demonstrate the perfor-
mance of the proposed method. All experiments dealt with a two-
source two-microphone case.

5.1 Anechoic mixing

In the first experiment, observed signals were instantanous mixtures
of source signals. The objective is to validate the algorithm for
optimizing unmixing matrices shown in Section 4.3.

In this experiment, the proposed method was tested in 100 tri-
als. Each trial used a mixing matrix that was independently gener-
ated from a zero-mean unit-variance Gaussian distribution. The two
source signals were male and female speech signals taken from the
JNAS database. The sampling rate was 8 kHz and the signal length
was 5 seconds. The parameters were set as follows: the STFT frame
size was 256 points, the STFT frame shift was 128 points, the win-
dow function was a Hanning window, the regression order, K;, was
0 for any /, the number of poles, P, was 12, and there were 3 itera-
tions. Recall that setting K; at O reduces the proposed method to a
frequency-domain BSS method.

Improvement of signal to interference and noise ratio
(SINR) [13] averaged over the 100 trials was 14.7 dB. This result
indicates the validity of the proposed unmixing-matrix optimization
algorithm.

5.2 Convolutive mixing of speech and noise

In the second and third experiments, the observed signals were syn-
thesized by convolutively mixing two source signals by using room
impulse responses measured in a room with an RT¢( of 0.6 seconds.
The objective of these experiments is to evaluate the overall perfor-
mance of the proposed method.

The second experiment used a male utterance and a pink noise
as source sounds. The parameters were common to those of the first
experiment except that the regression order, K;, was set at 40 here.

Figure 3 shows the waveforms of the clean speech, the observed
speech, and the estimated speech. The speech waveform estimated
with the conventional frequency-domain BSS method reported in
[7] s also plotted. The conventional frequency-domain BSS method
used a 1024-point Hanning window with 256-point overlap. We see
that the proposed method canceled out a larger amount of the in-
terfering noise than the conventional method. This is because the
proposed method can reduce the reverberant components of speech
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Figure 3: (Upper left) Clean speech waveform. (Upper right) Ob-
served speech waveform. (Lower left) Speech waveform estimated
with proposed method. (Lower right) Speech waveform estimated
with conventional method.

and noise, which are never canceled out without using a deconvolu-
tion system. Indeed, the speech estimated with the proposed method
sounded less reverberant.

5.3 Convolutive mixing of two speeches

In the third experiment, the source signals were the male and female
speech signals that were used in the first experiemnt. The other
conditions were common to those of the second experiment.

Figure 4 shows the waveforms of the source signals, the ob-
served signals, and the estimates of the source signals. We find that
the male speech was estimated with a high degree of accuracy. On
the other hand, the estimated female speech signal still contained
an male speech interfering component, though the magnitude of the
male speech was reduced to some extent. This may be attributed to
limiting the deconvolution system to a causal system. A thorough
evaluation and further improvement of the proposed method will be
included in future work.

6. CONCLUSION

This paper described a method for the blind separation and dere-
verberation of convolutive audio mixtures. The proposed method
was derived in the framework of the ML estimation method. The
TVAP source model was introduced to derive the likelihood func-
tion. The optimization algorithm consisted of three analytically cal-
culated optimization steps. The proposed method yielded promising
experimental results.
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