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ABSTRACT 

This paper introduces a new algorithm for extracting sev-

eral straight lines in a binary image. This algorithm is based 

on the optimization of a new criterion called “Line-K-

product” (LKP) which is derived from the K-product algo-

rithm we introduced in a previous work [1] for unsupervised 

mixture estimation. A relaxation algorithm is proposed to 

find the minimum of LKP. Contrary to the classical Hough 

transform (HT) based methods our approach does not re-

quire the tricky configuration of extra parameters. Simula-

tions finally illustrate the superiority of our approach com-

pared to the HT-based algorithm. 

1. INTRODUCTION 

In this paper, we focus on straight line extraction algorithms. 

This topic has been deeply studied in the past and Hough 

transform (HT) is a well-known technique for extracting 

lines [2]. Implementation of HT was analysed in [3] while its 

performance for images with additive noise was addressed in 

[5]. It is nevertheless well-known that HT involves a thresh-

old process and a clustering stage and that detecting peaks in 

the accumulator array is not always a reliable process [6]. 

This clustering stage was deeply analysed in [4][9][12][13]. 

 

A new approach is proposed to extract several straight lines 

from a noisy binary image. It is mainly based on the mini-

mization of a new optimization criterion called "Line K-

Product" (LKP) derived from the K-Product (KP) algorithm 

we recently introduced in [1] for unsupervised mixture esti-

mation. The paper is organized as follows. In section II we 

recall the definition of the KP criterion and derive the LKP 

criterion for straight line extraction. An iterative relaxation 

algorithm is then proposed to find the minimum of LKP. In 

section III we present simulations results which illustrate the 

superiority of our approach compared with the Hough 

Transform. Section IV finally concludes the paper.  

 

2. LK PRODUCT ALGORITHM 

Given a set of univariate observations { } [ ]Nnnx
,1∈

 of a K-

component mixture, the K-product (KP) algorithm was in-

troduced in [1] [10] to estimate the mixture component ex-

pectations )m,...,m( K1=m . The algorithm is based on the 

minimization of the KP criterion )(J KP u  defined by: 

 ( )∑ ∏
= =

−=
N

1n

K

1k

2
knKP ux)(J u . (1.) 

The first intuitive motivation for defining this criterion is its 

behavior in the limit case, when the variances of the compo-

nents are null. In this particular case, all the observations are 

equal to one of the km  so 0)(J KP =m  and )(J KP u  is 

minimal in u=m. The second motivation to define the KP 

criterion is that, in the general case, it does not have any local 

non-global minima. The global minimum of JKP can be for 

instance reached by the simple relaxation algorithm de-

scribed in [10] or by a non-iterative algorithm described in 

[1]. It provides a biased but useful estimation of the mixture 

component expectation which can be used to cluster the data 

observation (nearest neighbor classification) and separate the 

K mixture components. 

 

In this paper we extend the KP principle to the extraction of 

straight lines in binary image. The threshold process used to 

obtain the binary image is not detailed in this paper even if it 

has a strong impact of the performance. The observation is 

then a set of couples { } [ ]Nnnn yx
,1

,
∈

 which indicate the coor-

dinates of the black pixels in the binary image. 

 

Among this set of (potentially noisy) observations we are 

looking for K Cartesian straight line equations defined by 

parameters { } [ ]K,1kkk b,a ∈ : kk bxay += . In other word we 

assume that for all observation n there is one k such as 

nkk bxay ε++= , where nε is an error (noise) random 

process. 

 

The extended KP criterion, called "Line K-Product" (LKP) 

criterion ),(J LKP ba , is defined by: 
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where )a,...,a( K1=a  and )b,...,b( K1=b  are the set of 

tested parameters of the straight line equations, and 

( )

)a1(

bxay

2
k

2
knkn

+

−−
is therefore the exact (thanks to the de-

nominator) quadratic distance between the observation 

{ }nn y,x  and the tested straight line { }kk b,a . 

 

This criterion can be minimized using a relaxation algorithm. 

The main idea is to freeze all couples { }kk b,a  except one, 

for instance { }jj b,a , and to cancel partial derivatives with 

respect to this "free" couple. 

In such a case { }jj b,a  is then obtained by the minimisation 

given hereafter: 

 
( )

n,j
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2
jnjn
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Min
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∑
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, (3.) 

where the weight njp ,  is defined by: 
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knkn

n,j
)a1(

bxay
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Once { }jj b,a
 
 obtained, we freeze this couple and process 

to the optimisation described in equation (3) with respect to 

another couple. Once all couples optimised, we iterate the 

algorithm. We stop the algorithm either when a certain num-

ber of iterations is reached or when the ),(J LKP ba  de-

crease between two iterations is less than a given threshold. 

In the two following section we focus on the cancellation of 

partial derivative of ),(J LKP ba  with respect to { }jj b,a . 

2.1 First partial derivative 

 

We first cancel the derivative with respect to ja :  

 

0
a

),(J

j
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∂

∂ ba

 

We obtain: 
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Developing this equation gives: 
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Then: 
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We then introduce the following intermediate terms: 
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where we omit the index j for the sake of simplicity. 

 

Equation (5) becomes: 

( ) ( )
0

222

=−+

+−−+−

xyxj

yjjyyxxjxjxyj

PPb

PbPbPPaPbPa
 (6.) 

2.2 Second partial derivative 

 

The second step of the algorithm concerns the partial deriva-

tive with respect to 1b : 0
b

),(J

j

LKP =
∂

∂ ba
. We obtain: 

 ( ) 0,
1

=−−−∑
=

nj

N

n
jnjn pbxay  

Using the variables defined in 2.1: 

 0=++− PbPaP jxjy  

Then: 

 ( )xjyj PaPQb −=  (7.) 

 

Merging (7) with (6), yields to: 
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We obtain then directly: 
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 (8.) 

 

By definition we have 1=QP , the polynomial of order three 

of equation (8) is then reduced to a polynomial of order two 

given by: 

 
( ) ( )

0

2
2222

=−+

+−−−+−

xyxy

yxyyyxxjxyxyj

PPQP

QPQPQPPPaPQPPa
(9.) 

So it appears that we just have to calculate the roots of this 

polynomial. After this stage jb  is then directly given by (7).  

 

Depending on the roots of the polynomial, we obtain then 

one or two couples ),( jj ba . We keep the solution that mini-

mize (3) 

 

The complete algorithm is summarized in table 1 hereafter: 

 

for I =1 to the maximal number of iterations 
  for j =1 to K 

 Freeze ),( kk ba  for [ ] { }jNk −∈ ,1 , 

 Calculate, yyxxxyx PPPPP ,,,,  

 Find ja  that are roots of equation (9) 

 Find corresponding jb  parameters with equation (7) 

 Keep the couple ),( jj ba  that minimizes equation (3) 

  end for j 
end for l 

Table 1 – LK product Algorithm for N lines 

3. SIMULATION RESULTS 

In this section we consider binary images with pixels belong-

ing to straight lines. If we consider ideal coordinates of a 

pixel { }i
n

i
n y,x , we simulate the observation noise as an addi-

tive two dimensional Gaussian process. We obtain then the 

noisy observation { }n
i
nnn

i
nn wyy,vxx +=+=  where nv  

and nw  are two iid Gaussian variables with the same vari-

ance 2σ . 

 

In figure 1 we represent pixels (crosses) and straight lines 

obtained with HT and LKP algorithms. In this simulation, we 

have 3 lines, 100 pixels per line and the observation noise is 

weak: 12 =σ . It appears that the two algorithms provide 

similar estimation performances. 
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Figure 1 – 3 lines, σ²=1, HT solid, LKP dash 

Values obtained for lines parameters are given in table 2 

hereafter: 

 

(a ; b) 6 ; -350 1 ; 10 -2 ; 200 

HT 5.97 ; -351.4 1 ; 9.9 -2 ; 199.5 

LKP 5.73 ; -326.1 0.99 ; 11.9 -1.96 ; 198.9 

Table 2 – Estimation of lines, parameters 3 lines, σ²=1 

In figure 2, we analyse the same configuration but we in-

crease the noise variance: 162 =σ . 
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Figure 2 – 3 lines, σ²=16, HT solid, LKP dash 

It appears that HT algorithm is then less accurate than LKP. 

This assumption is confirmed by results presented in table 3. 

 

(a ; b) 6 ; -350 1 ; 10 -2 ; 200 

HT 4.30 ; -233.4 1.06 ; 11.6 -1.48 ; 162.8 

LKP 4.73 ; -240.3 0.96 ; 16.9 -1.77 ; 195.1 

Table 3 – Estimation of lines, parameters 3 lines, σ²=16 
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In order to confirm this first result more than 100 simulations 

have been performed with the same straight lines equations, 

but with different pixels coordinates and noise realisations.  

For the a parameter the variance obtained with the HT algo-

rithm was equal to 2.74 while it was only equal to 1.26 with 

the LKP algorithm. 

For the b parameter, the variance was equal to 1.4 10
4
 with 

the HT algorithm and 9.7 10
3
 with the LKP algorithm. 

This scattering of estimations is illustrated in figure 3 where 

accumulation of results obtained with 4 simulations is pre-

sented. 
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Figure 3 – 3 lines, σ²=16, HT solid, LKP dash, 4 simulations 

In figure 5, we present results obtained always with the same 

configuration, but we increased once more the noise vari-

ance, reaching 242 =σ . In this simulation case we observe 

an error for the HT algorithm where one estimated straight 

line is between two true lines. Estimations given by LKP 

algorithm exhibit, in this case, better performances. 
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Figure 4 – 3 lines, σ²=24, HT solid, LKP dash 

 

(a ; b) 6 ; -350 1 ; 10 -2 ; 200 

HT 2.16 ; -72.6 -0.6 ; 146.6 -0.7 ; 86.5 

LKP 4.61 ; -232.2 0.95 ; 18.2 -1.68 ; 193.6 

Table 4 – Estimation of lines parameters, 3 lines, σ²=24 

In Figure 5 we analyse a configuration with 5 lines. It ap-

pears in this case that HT algorithm falls in a local minimum. 

For HT, we observe one straight line estimation between two 

true lines and two estimations taking into account the same 

line. 
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Figure 5 – 5 lines, σ²=1, HT solid, LKP dash 

 

 (a ; b) 6;-350 1;10 -2;200 -3;350 1;50 

HT 6.1; 

-357.8 

0.99; 

10.7 

-2.43; 

263.0 
 1.03; 

46.83 

0.96; 

55.87 

LKP 5.95; -

345.08 

0.99; 

10.37 

-1.90; 

197.91 

-2.98; 

350.74 

0.98; 

53.09 

Table 5 – Estimation of lines parameters, 5 lines, σ²=1 

 

In Figure 6 we analyse the same configuration with an in-

crease of the noise variance. Once more we observe some 

problems with HT algorithm, having one estimation be-

tween two true lines and two estimation going from one line 

to the other.. 
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Figure 6 – 5 lines, σ²=7, HT solid, LKP dash 
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(a ; b) 6;-350 1;10 -2;200 -3;350 1;50 

HT 5.40; 

-318.8 

1.35; 

-5.9 

-1.77; 

173.2 

-2.01; 

248.8 

0.93; 

44.88 

LKP 4.75 ; -

235.9 

0.99; 

11.56 

-1.84 ; 

197.4 

-2.82 ; 

347.4 

0.99; 

11.56 

Table 6 – Estimation of lines parameters, 5 lines, σ²=7 

 

4. CONCLUSION 

In this paper we introduced a new algorithm for extracting 

several straight lines in a binary image. We compared this 

algorithm with the well-known Hough Transform and we 

showed that, in many simulation cases, performances ob-

tained were greater than those obtained with the Hough 

Transform. The main advantage of this new algorithm is the 

absence of threshold process or clustering stages. The only 

parameter of the algorithm is a number of iterations for a 

relaxation process. All simulations presented have been ob-

tained after 40 iterations but this number can easily be re-

duced thanks to a stop criterion. 

The straight line extraction in binary images is involved in 

many algorithms [8] and the new proposed algorithm offers 

finally an interesting non-parametric approach to this prob-

lem. 

The LKP algorithm can be extended to other parametric 

functions (e.g. circles), like the HT. For the case of K circles 

with centers ( )kk ba ,  and radius kr , the new criterion CKPJ  

is given hereafter : 
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After straightforward derivations, we obtain : 
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