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Abstract— We propose a new full-rate space-time block code

(STBC) for two transmit antennas which can be designed to achieve

maximum diversity or maximum capacity while enjoying optimized

coding gain and reduced-complexity maximum-likelihood (ML) decod-
ing. The maximum transmit diversity (MTD) construction provides a

diversity order of 2Nr for any number of receive antennas Nr at the

cost of channel capacity loss. The maximum channel capacity (MCC)
construction preserves the mutual information between the transmit

and the received vectors while sacrificing diversity. Both constructions

enjoy low-complexity ML decoding proportional to the square of the

signal constellation size making them attractive alternatives to existing
full-diversity full-rate STBCs in [6], [3] which have high ML decoding

complexity proportional to the fourth order of the signal constellation

size. Furthermore, we design a differential transmission scheme for
our proposed STBC, derive the exact ML differential decoding rule,

and compare its performance with competitive schemes. Finally, we

investigate transceiver design and performance of our proposed STBC

over frequency-selective channels.

I. INTRODUCTION

V-BLAST, proposed in [7], is a well-known multi-input multi-

output (MIMO) system which operates at very high spectral

efficiency with low encoding and decoding complexities. However,

it can not exploit the maximum diversity available in a MIMO

channel and, therefore, can suffer appreciable performance loss.

Orthogonal STBCs (OSTBC) [1] [2], on the other hand, are

primarily designed to capture full transmit diversity of the MIMO

channel while keeping the decoding complexity linear in the

number of transmit antennas. Due to their orthogonal structure

constraint, OSTBC suffers from rate loss. Moreover, with the

exception of the Alamouti STBC with 1 receive antenna [1],

OSTBC schemes do not preserve the mutual information between

the received and the transmit signal vectors due to the induced

space-time correlation on the channel matrix. These observations

motivated researches to design several STBCs for Nt = 2
which not only achieve the capacity of the underlying MIMO

channel but also ensure maximum diversity, thanks to their special

algebraic structure. A number-theoretic STBC construction, called

B2,φ, was proposed in [3] and proved to be a full-diversity

capacity-achieving STBC. For more than one receive antenna, the

performance of B2,φ was shown to be superior to the Alamouti

STBC at the same rate. The Golden code in [6] was shown

to achieve the optimum diversity-multiplexing gain tradeoff [8].

However, the main drawback is its exponentially-growing ML
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decoding complexity as a function of the number of transmit

antennas and constellation size. We derive a new STBC design

in this paper for Nt = 2 transmit antennas and T = 2 time

slots which enjoys low-complexity ML decoding (quadratic in the

constellation size). 1

II. SYSTEM MODEL AND DESIGN CRITERIA

Consider a vector of 4 information symbols s = [s1 s2 s3 s4]
t

where [.]t denotes the matrix transpose and the information

symbols sj , j = 1, · · · , 4 are carved from a q-QAM constellation

and transmitted from Nt = 2 transmit antennas during T = 2
symbol periods. Define an Nt × T matrix u(s) as the STBC

codeword associated with the vector s with the entries umν which

are transmitted simultaneously from Nt transmit antennas during

each symbol period ν = 1, · · · , T . The received signal matrix of

size (Nr × T ) is given by

y =

r
ρ

Nt

Hu + w (1)

where H ∈ C
Nr×Nt denotes the channel matrix with entries hri

representing the fading coefficients associated with the ith transmit

and the rth receive antenna. The channel coefficients are samples

of an independent and identically distributed (i.i.d.) complex

Gaussian random process with zero mean and variance 0.5 per

real dimension. The channel coefficients are assumed quasi-static

flat-fading i.e. fixed during one STBC transmission of T symbol

periods. The noise matrix w ∈ C
Nr×T has entries wrν which

are drawn from a white Gaussian distribution CN (0, σ2). The

received signal matrix y ∈ C
Nr×T is generated by stacking signal

samples from the Nr receive antennas at time slots 1, · · · , T . The

normalization factor
q

ρ

Nt
in (1) ensures that ρ is the SNR at each

receive antenna since E[tr{uu∗}] = Nt where E[·] and tr{·} are

the expectation and trace operations, respectively. Since it takes

T symbol periods to transmit a vector of size p, the transmission

rate is defined as

Rs =
p

T
symbols per channel use (pcu) (2)

1During the review process of this paper the reviewers brought to our
attention recent code constructions which were independently developed
in [9], [11] and [10] and their unified treatment in [12]. As we will show in
Section VII (c.f. Fig.4), these codes achieve almost the same performance
as our proposed code at similar or higher decoding complexity. In addition
we develop its non-coherent (differential) encoding/decoding scheme, and
study its performance in frequency-selective channels. All of these issues
were not considered in [9], [11], [10] and [12]
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Note that an STBC is said to be full-rate if [8] Rs = Nt symbols

pcu.

III. PROPOSED 2 × 2 STBC DESIGN

A. Maximum Transmit Diversity (MTD) Construction

Defining

u , diag
�
R
h

V ′

1 V ′

2

i�
+ diag

�
R
�
V1 V2

�
J
�
J (3)

where the diag(·) operator constructs a diagonal matrix by setting

the off-diagonal elements to zero and

J =

�
0 1
1 0

�
R ,

�
α1 β1

α2 β2

�
(4)

where V ′

i for i = 1, 2 represents the ith column of one Alamouti

code. Similarly, Vj , j = 1, 2 is the jth column of another Alamouti

code. Multiplying matrices in (3) and collecting terms we get

u =

"
s
′

1α1 − s
′∗
2 β1 s∗3β1 + s4α1

s3α2 − s∗4β2 s
′∗
1 β2 + s

′

2α2

#
(5)

The matrix R is designed to maximize the coding gain and

guarantee full diversity of the code in (5) as follows

α1 = sin(θ1); β1 = cos(θ1); α2 = sin(θ2); β2 = cos(θ2) (6)

where

{θopt

1 , θ
opt

2 } = {arctan(2), arctan(
1

2
)} (7)

The proof is given in [4].

B. Maximum Channel Capacity (MCC) Construction

It can be shown that the eigenvalue distribution of the equivalent

channel matrix for the MTD STBC in (5) is not the same as

that of the original channel matrix due to the induced space-time

correlation, hence this design is not a capacity-achieving STBC.

Therefore, as we increase Nr or the constellation size, the MTD

construction loses coding gain. It is possible, however, to re-design

the code to preserve the mutual information between the transmit

and received vectors. Let P be a 2 × 2 transformation matrix.

Introducing R
′

,

�
a1 b1

a2 b2

�
= P R, where R is defined in

(4), our goal is to design P such that the STBC

v , diag
�
R

′
h

V ′

1 V ′

2

i�
+ diag

�
R

′ � V1 V2

�
J
�

J

=

"
s
′

1a1 − s
′∗
2 b1 s∗3b1 + s4a1

s3a2 − s∗4b2 s
′∗
1 b2 + s

′

2a2

#
(8)

is information lossless. This is achieved by

R
′

=

�
α1 β1

β2 α2

�
where α1, β1, α2, β2 are the MTD design

parameters. The proof is given in [5].

IV. DECODING

Since the MTD and MCC constructions have the same algebraic

structure (i.e. linear combination of two Alamouti STBC), the

same decoding algorithm can be used for both constructions.

To decode the STBC schemes in [3], [6], a size-q4 exhaustive

ML search has to be performed over all 4 information symbols

transmitted in each codeword. Therefore, real-time implementation

of these schemes is challenging in practical systems, especially

for large signal constellations. Any suboptimal receiver such as

zero-forcing, minimum mean square error (MMSE) or ordered

successive interference cancellation (OSIC), will degrade their

performance compared to full ML decoding. Hence, the ultimate

goal of these STBC schemes which is to achieve the optimum

diversity-multiplexing trade-off would not be accomplished due

to this performance loss.

Our proposed hybrid maximum likelihood interference can-

cellation (HMLIC) algorithm operates as follows. The decoding

process starts by performing conditional ML decoding only on

symbols s
′

2 and s3 and for each of their q2 possible choices, their

interfering effect is canceled from the original received signal

vector. Due to the special algebraic structure of the MTD and

MCC codes, the resulting equivalent channel matrix for symbols

s
′

1 and s4 is orthogonal; hence, simple matched-filtering is ML-

optimal for joint decoding of s
′

1 and s4. Finally, for each of the q2

candidate codewords, we evaluate the metric ‖Y −
q

ρ

Nt
Hu‖2

and choose the codeword that minimizes it. Therefore, the ML

decoding complexity is reduced from a size-q4 search to a size-

q2 search plus q2 matched filters. For detailed mathematical

description of the decoding process the reader is referred to [4].

V. DIFFERENTIAL TRANSMISSION

Channel estimation in a fast time-varying communication envi-

ronment is computationally expensive and can result in substantial

data rate loss due to training overhead. Moreover, considering the

increased number of unknown channel coefficients in a MIMO

system, it is sometimes desirable to eliminate channel estimation

at the receiver at the cost of some performance loss. In this section,

we investigate differential transmission for our proposed code and

derive the exact ML differential decoding metric.

A. Differential Encoder

Assuming differential transmission of M MTD 2codewords and

denoting the kth transmitted codeword by X(k) for 0 ≤ k ≤ M−
1. The differential scheme is initialized by transmitting X(0) =
I2, where I2 is the 2×2 identity matrix, and proceeds as follows

B(k) = X(k − 1)u(k); X(k) =
B(k)p

e(k)
(9)

The total transmitted energy from all antennas is constrained to

be a constant independent of Nt; i.e.

E

"
NrX
r=1

NtX
m=1

|xm,r(k)|2
#

= T (10)

where X(k−1) and X(k) are the transmitted codewords at times

(k − 1) and k, respectively, and e(k) is the energy normalizer i.e.

e(k) = tr{B(k)BH(k)}
T

.

2The same approach can be followed for the MCC code as well.
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Keeping the average transmitted energy constant is critical here

in the differential encoder since the MTD code is not orthogonal

and successive multiplication of the codewords may cause its

energy to blow up or diminish. The corresponding received signal

blocks over codeword transmissions k and k − 1 are

[Y (k − 1) Y (k)] = [H(k − 1)X(k − 1) H(k)X(k)]

+ [W (k − 1) W (k)]
(11)

Substituting (9) into (11) and applying the quasi-static channel

assumption H(k) = H(k − 1), we can write

Y (k) =
Y (k − 1)u(k)p

e(k)
+ W̃ (k) (12)

where the equivalent noise matrix seen by the differential decoder

is given by

W̃ (k) = W (k) − W (k − 1)u(k)p
e(k)

(13)

which is a colored noise with the variance of

σ
2
W̃

= E
h
tr
n

W̃ (k)W̃
H

(k)
oi

= σ
2

�
1 +

1

e(k)
E
h
tr{u(k)uH(k)}

i� (14)

B. Differential Decoding

Due to the non-orthogonality of the MTD code, its ML differen-

tial decoding can not be performed using simple linear processing

as in OSTBC and an exhaustive search is needed in general whose

complexity increases exponentially with the constellation size and

the number of transmit antennas. Starting from (11), we can derive

the ML decoding rule for our non-orthogonal differential MTD as

follows. Define

YE , [Y (k) Y (k − 1)]

= H(k) [X(k) X(k − 1)] + [W (k) W (k − 1)]

= H(k)X(k − 1)
h
u

′

(k) I2

i
+ [W (k) W (k − 1)]

, HEG + WE

(15)

where HE , H(k)X(k−1) and u
′

(k) = u(k)√
e(k)

. Since WE =

[W (k) W (k − 1)] is AWGN and independent of G, we can

write the exact ML decoding metric as follows

JML = arg min ‖YE − HEG‖2
(16)

which can be equivalently written as

JML = min
n
‖Y (k) − HEu

′

(k)‖2 + ‖Y (k − 1) − HE‖2
o

(17)

We can eliminate the dependence of JML on HE by differenti-

ating JML with respect to HE to find the choice of HE which

minimizes JML. Using the identity on the derivative of a quadratic

function of a matrix with respect to that matrix we get

0 =
∂JML

∂HE

= −(Y (k)u
′H(k) + Y (k − 1)) + HE (I2 + u

′

(k)u
′H(k))

(18)

Therefore, we can solve for the optimum choice of HE from (18)

to be

HE = (Y (k)u
′H(k)+Y (k− 1))(I2 +u

′

(k)u
′H(k))−1

(19)

Substituting back for HE from (19) in (17), we get

JML = arg min ‖Y (k) −
h
Y (k)u

′H(k) + Y (k − 1)
i
×h

I2 + u
′

(k)u
′H(k)

i−1

u
′

(k)‖2

+ ‖Y (k − 1) −
h
Y (k)u

′H(k) + Y (k − 1)
i
×h

I2 + u
′

(k)u
′H(k)

i−1

‖2

(20)

This metric is very complex to implement. Using (12), the

following approximate ML decoder can be derived by minimizing

the following suboptimal3 metric

J
approx

ML = arg min

Y (k) − Y (k − 1)u(k)p
e(k)

2

(21)

The performances of the metrics J
approx

ML and JML will be compared

in Section VII for both the MTD construction and the Golden

code. Note that JML collapses to J approx

ML for orthogonal STBC4.

Even more important are the two observations that the differential

MTD code outperforms the differential Golden code and that the

performance gap between differential and coherent decoding is

less for the MTD code than for the Golden code.

VI. FREQUENCY-SELECTIVE CHANNELS

Assume that the maximum delay spread between the Nr ×
Nt channel paths is L and define hri(l) as the lth channel tap

between the ith transmit antenna and the rth receive antenna where

r ∈ [1, Nr], i ∈ [1, Nt], l ∈ [0, L]. We generate 4 information

blocks each of length N and combine them in the time domain so

that after DFT processing at the receiver, we get the MTD code

structure in the frequency domain. To make the channel matrices

circulant, a cyclic prefix of length L is appended at the end of each

information block in the time domain. Denoting the nth symbol of

the kth transmitted block over the ith transmit antenna by uk
i (n)

we can write

u
k
1(n) = α1s

k
1(n) − β1s

∗k
2 ([N − n]N )

u
k
2(n) = α2s

k
3(n) − β2s

∗k
4 ([N − n]N )

(22)

where [·]N is the modulo-N operation. Equation (22) can be

represented in vector notation as follows

u
k

1 = α1s
k

1 − β1s
k

2 ; u
k

2 = α2s
k

3 − β2s
k

4
(23)

where [·] stands for the complex-conjugate operation over a vector

of length N . The received block from the rth receive antenna

during the kth block transmission in the time domain is given by

y
k

r = Hc1r

�
α1s

k

1 − β1s
k

2

�
+ Hc2r

�
α2s

k

3 − β2s
k

4

�
+ w

k

r

where Hcir
is the circulant channel matrix from the ith trans-

mit antenna to the rth receive antenna. Assuming quasi-static

3This metric is suboptimal since the equivalent noise term W̃
k

in (13)

is not white and is dependent on u
′

(k).
4This can be easily verified by substituting u

′

(k)u
′H(k) = I2 in (17).
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channels, the channel taps remain constant over two consecutive

block transmissions. Performing the same block processing for the

(k + 1)th block transmission, the (k + 1)th received block in the

time domain is given by

y
k+1
r = Hc1r

�
β1s

k+1
3 + α1s

k+1
4

�
+ Hc2r

�
α2s

k+1
2 + β2s

k+1
1

�
+ w

k+1
r

Since all channel matrices are circulant, they can be diagonalized

using the DFT orthonormal matrix F whose (p, q) element is

given by F (p, q) = 1√
N

exp(−j 2πpq

N
) for 0 ≤ p, q ≤ N − 1.

At the receiver, the time domain blocks are transformed to the

frequency domain by first removing the cyclic prefix and then

multiplying by F as follows

Y
k

r , F y
k

r = F F
H

Dr1F
�
α1s

k

1 − β1s
k

2

�
+ F F

H
Dr2F

�
α2s

k

3 − β2s
k

4

�
+ F w

k

r

= Dr1

�
α1S

k

1 − β1S
∗k

2

�
+ Dr2

�
α2S

k

3 − β2S
∗k

4

�
+ W

k

r

(24)

where Sk

i = F sk

i , i = 1, · · · , 4 are the transmitted blocks in

the frequency domain while Dr1 and Dr2 are N × N diagonal

matrices with (n, n) elements given by

Dri(n, n) =
1√
N

LX
l=0

hr,i(l)e
−j 2πnl

N (25)

Following the same procedure, one can derive the received block

during the (k + 1) block transmission to be

Y
k+1

r = Dr1

�
β1S

∗k+1
3 + α1S

k+1
4

�
+ Dr2

�
α2S

k+1
2 + β2S

∗k+1
1

�
+ W

k+1
r

(26)

Taking the element-wise complex conjugation of Y k+1
r and

collecting all the received blocks from the Nr receive antennas, we

get the system of equations in the frequency domain. Note that

performing HMLIC on this system of equations is not possible

since equalization is done in the frequency-domain where the

lattice structure (due to the signal constellation) has been destroyed

by the application of the DFT matrix. Instead, we consider the

MMSE estimate of the nth element of each of 4 received blocks

in the frequency-domain which is given by

Ŝ
k(n) =

�
D

H(n, n)D(n, n) +
Nt

ρ
I4

�−1

D
H(n, n)Y k(n)

(27)

where Ŝk(n) = [Sk

1 (n) S∗k

2 (n) Sk

3 (n) S∗k

4 (n)]t is a 4 × 1
vector of the MMSE estimates of the nth symbols from each

of the 4 information blocks. Similarly, D(n, n) is a 2Nr × 4
matrix constructed by choosing the nth diagonal element of

Dri for 1 ≤ r ≤ Nr and i = 1, 2. In addition, Y k(n) =
[Y k

1 (n) Y
∗k+1
1 (n) · · ·Y k

Nr
(n) Y

∗k+1

Nr
(n)]t is the vector of

the nth elements from each of the 4 received blocks. Therefore,

MMSE-based SC-FDE is performed over the nth elements of the 4
information blocks in the frequency domain. Stacking all symbol

estimates in vectors, they can be transformed back to the time

domain followed by a slicer to decode the information blocks.

VII. SIMULATION RESULTS

The BER performances of the MTD and MCC constructions are

compared under different transmission scenarios in Fig.1. It can be

seen from this figure that when the number of receive antennas and

the spectral efficiency are small, the MTD construction achieves

better performance since achieving full diversity is more critical

than full capacity under these scenarios. However, as we increase

the number of receive antennas, the capacity of the underlying

MIMO channel will increase and hence preserving the mutual

information between the transmit and the received signal vectors

becomes more crucial. The same trend also holds as we increase

the signal constellation size and the MCC construction becomes

preferable in this case as well. Next, we compare in Fig.2 the

BER performance of the JML and J
approx

ML differential decoder

metrics for the MTD and Golden codes with Nr = 1, 2 and QPSK

constellation. Thanks to the special algebraic structure of the MTD

code, the performance gap between the two metrics is not as high

as that of the Golden code for Nr = 1. Furthermore, it is clear

that the differential MTD code outperforms the differential Golden

code by about 2.2dB at high SNR for Nr = 1.

The BER performance of the MTD code is investigated for the

frequency-selective channel scenario with L = 3, 5, 7 and a block

size of N = 64. As it can be seen from Fig.3, the MMSE-based

SC-FDE is clearly capable of capturing multi-path diversity and

outperforms V-BLAST at a spectral efficiency of 4 bits pcu and

Nr = 2.

Fig.4 shows a performance comparison of MTD with those of

[9], [11]5, and [10] with Nr = 2 and spectral efficiency of 4 bits

pcu. At the same figure, MCC is compared with the schemes in

[9], [10] and [11] and in the presence of Nr = 5 receive antennas

and spectral efficiency of 4 bits pcu. As it can be seen from this

figure, if the right construction i.e. MTD or MCC is used in the

right transmission environment, then the BER performances of

these schemes are almost the same.

VIII. CONCLUSION

We designed a closed-form rate-2 space-time block code for two

transmit antennas through a judicious application of rotation and

linear combination operations on two parallel Alamouti codes. We

presented two different constructions of the proposed code design,

related through a simple transformation, where one construction

maximizes the diversity gain while the other one guarantees the

information lossless property. We show how to use our proposed

code in differential transmission scheme and in frequency-selective

channels.
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transmission for the MTD and Golden codes with QPSK constellation and
1 and 2 receive antennas.
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Fig. 3. BER performance of the MMSE SC-FDE receiver with the MTD
code compared with V-BLAST for different channel delay spread L =
3, 5, 7 at the rate of 4 bits pcu and Nr = 2.
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Fig. 4. Comparison between MTD and MCC with the codes in [9], [10]
and [11] and . The dashed curves are for comparison of MCC with others
using 5 receive antennas. The solid curves are for comparison of MTD
with others using 2 receive antennas. Spectral efficiency is 4 bits pcu.
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